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Abstract—The present paper proposes the first static analysis
for Android applications which is both flow-sensitive on the heap
abstraction and provably sound with respect to a rich formal
model of the Android platform. We formulate the analysis as a
set of Horn clauses defining a sound over-approximation of the
semantics of the Android application to analyse, borrowing ideas
from recency abstraction and extending them to our concurrent
setting. Moreover, we implement the analysis in HornDroid, a
state-of-the-art information flow analyser for Android applica-
tions. Our extension allows HornDroid to perform strong updates
on heap-allocated data structures, thus significantly increasing its
precision, without sacrificing its soundness guarantees. We test
our implementation on DroidBench, a popular benchmark of
Android applications developed by the research community, and
we show that our changes to HornDroid lead to an improvement
in the precision of the tool, while having only a moderate cost in
terms of efficiency. Finally, we assess the scalability of our tool
to the analysis of real applications.

I. INTRODUCTION

Android is today the most popular operating system for
mobile phones and tablets, and it boasts the largest application
market among all its competitors. Though the huge number of
available applications is arguably one of the main reasons for
the success of Android, it also poses an important security
challenge: there are way too many applications to ensure that
they go through a timely and thorough security vetting before
their publication on the market. Automated analysis tools thus
play a critical role in ensuring that security verification does
not fall behind with respect to the release of malicious (or
buggy) applications.

There are many relevant security concerns for Android
applications, e.g., privilege escalation [11], [5] and component
hijacking [26], but the most important challenge in the area is
arguably information flow control, since Android applications
are routinely granted access to personal information and other
sensitive data stored on the device where they are installed.
To counter the threats posed by malicious applications, the
research community has proposed a plethora of increasingly
sophisticated (static) information flow control frameworks for
Android [41], [42], [27], [13], [22], [3], [40], [14], [6]. Despite
all this progress, however, none of these static analysis tools
is able to properly reconcile soundness and precision in its
treatment of heap-allocated data structures.

A. Soundness vs. Precision in Android Analyses

Designing a static analysis for Android applications which
is both sound and precise on the heap abstraction is very

challenging, most notably because the Android ecosystem is
highly concurrent, featuring multiple components running in
the same application at the same time and sharing part of
the heap. More complications come from the scheduling of
these components, which is user-driven, e.g., via button clicks,
and thus statically unknown. This means that it is hard to
devise precise flow-sensitive heap abstractions for Android
applications without breaking their soundness. Indeed, most
existing static analysers for Android applications turn out to
be unsound and miss malicious information leaks ingeniously
hidden in the control flow: for instance, Table I shows a leaky
code snippet that cannot be detected by FlowDroid [3], a state-
of-the-art taint tracker for Android applications1.

1 public class Leaky extends Activity {
2 Storage st = new Storage();
3 Storage st2 = new Storage();
4 onRestart() { st2 = st; }
5 onResume() { st2.s = getDeviceId(); }
6 onPause() { send(st.s, "http://www.myapp.com/"); }
7 }

TABLE I
A SUBTLE INFORMATION LEAK

Assume that the Storage class has only one field s of
type String, populated with the empty string by its default
constructor. The activity class Leaky has two fields st and
st2 of type Storage. A leak of the device id may be
performed in three steps. First, the activity is stopped and then
restarted: after the execution of the onRestart() callback,
st2 becomes an alias of st. Then, the activity is paused
and resumed. As a result, the execution of the onPause()
callback communicates the empty string over the Internet,
while the onResume() callback stores the device id in st2
and thus in st due to aliasing. Finally, the activity is paused
again and the device id is leaked by onPause().

HornDroid [6] is the only provably sound static analyser for
Android applications to date and, as such, it correctly deals
with the code snippet in Table I. In order to retain soundness,
however, HornDroid is quite conservative on the prediction
of the control flow of Android applications and implements
a flow-insensitive heap abstraction by computing just one
static over-approximation of the heap, which is proved to be
correct at all reachable program points. This is a significant

1Android applications are written in Java and compiled to bytecode run
by a register-based virtual machine (Dalvik). Most static analysis tools for
Android analyse Dalvik bytecode, but we present our examples using a Java-
like language to improve readability.
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limitation of the tool, since it prevents strong updates [23]
on heap-allocated data structures and thus negatively affects
the precision of the analysis. Concretely, to understand the
practical import of this limitation, consider the Java code
snippet in Table II.

1 public class Anon extends Activity {
2 Contact[] m = new Contact[]();
3 onStart() {
4 for (int i = 0; i < contacts.length(); i++) {
5 Contact c = contacts.getContact(i);
6 c.phone = anonymise(c.phone);
7 m[i] = c;
8 }
9 send(m, "http://www.cool-apps.com/");

10 }
11 }

TABLE II
ANONYMIZING CONTACT INFORMATION

This code reads the contacts stored on the phone, but then
calls the anonymise method at line 6 to erase any sensitive
information (like phone numbers) before sending the collected
data on the Internet. Though this code is benign, HornDroid
raises a false alarm, since the field c.phone stores sensitive
information after line 5 and strong updates of object fields are
not allowed by the static analysis implemented in the tool.

B. Contributions

In the present paper we make the following contributions:
1) we extend an operational semantics for a core fragment

of the Android ecosystem [6] with multi-threading and
exception handling, in order to provide a more accurate
representation of the control flow of Android applications;

2) we present the first static analysis for Android applica-
tions which is both flow-sensitive on the heap abstraction
and provably sound with respect to the model above. Our
proposal borrows ideas from recency abstraction [4] in
order to hit a sweet spot between precision and efficiency,
extending it for the first time to a concurrent setting;

3) we implement our analysis as an extension of Horn-
Droid [6]. This extension allows HornDroid to perform
strong updates on heap-allocated data structures, thus
significantly increasing the precision of the tool;

4) we test our extension of HornDroid against DroidBench,
a popular benchmark proposed by the research commu-
nity [3]. We show that our changes to HornDroid lead
to an improvement in the precision of the tool, while
having only a moderate cost in terms of efficiency. We
also discuss analysis results for 64 real applications to
demonstrate the scalability of our approach. Our tool and
more details on the experiments are available online [1].

II. DESIGN AND KEY IDEAS

A. Our Proposal

Our proposal starts from the pragmatic observation that
statically predicting the control flow of an Android application
is daunting and error-prone [14]. For this reason, our analysis

simply assumes that all the activities, threads and callbacks of
the application to analyse are concurrently executed under an
interleaving semantics2. (In the following paragraphs, we just
refer to threads for brevity.)

The key observation to recover precision despite this con-
servative assumption is that the runtime behaviour of a given
thread can only invalidate the static approximation of the heap
of another thread whenever the two threads share memory.
This means that the heap of each thread can be soundly
analysed in a flow-sensitive fashion, as long as the thread
runs isolated from all other threads. Our proposal refines this
intuition and achieves a much higher level of precision by
using two separate static approximations of the heap: a flow-
sensitive abstract heap and a flow-insensitive abstract heap.

Abstract objects on the flow-sensitive abstract heap approx-
imate concrete objects which are guaranteed to be local to
a single thread (not shared). Moreover, these abstract objects
always approximate exactly one concrete object, hence it is
sound to perform strong updates on them. Abstract objects on
the flow-insensitive abstract heap, instead, approximate either
(1) one concrete object which may be shared between multiple
threads, or (2) multiple concrete objects, e.g., produced by a
loop. Thus, abstract objects on the flow-insensitive abstract
heap only support weak updates to preserve soundness. In
case (1), this is a consequence of the analysis conservatively
assuming the concurrent execution of all the threads and the
corresponding loss of precision on the control flow. In case (2),
this follows from the observation that only one of the multiple
concrete objects represented by the abstract object is updated
at runtime, but the updated abstraction should remain sound for
all the concrete objects, including those which are not updated.
The analysis moves abstract objects from the flow-sensitive
abstract heap to its flow-insensitive counterpart when one of
the two invariants of the flow-sensitive abstract heap may be
violated: this mechanism is called lifting.

Technically, the analysis identifies heap-allocated data struc-
tures using their allocation site, like most traditional abstrac-
tions [32], [16], [23], [21]. Unlike these, however, each allo-
cation site λ is bound to two distinct abstract locations: FS(λ)
and NFS(λ). We use FS(λ) to access the flow-sensitive ab-
stract heap and NFS(λ) to access the flow-insensitive abstract
heap. The abstract location FS(λ) contains the abstraction
of the most-recently-allocated object created at λ, provided
that this object is local to the creating thread. Conversely, the
abstract location NFS(λ) contains a sound abstraction of all
the other objects created at λ.

Similar ideas have been proposed in recency abstraction [4],
but standard recency abstraction only applies to sequential
programs, where it is always sound to perform strong updates
on the abstraction of the most-recently-allocated object. Our
analysis, instead, operates in a concurrent setting and assumes
that all the threads are concurrently executed under an inter-
leaving semantics. As we anticipated, this means that, if a

2We are aware of the fact that the Java Memory Model allows more
behaviours than an interleaving semantics (see [24] for a formalisation), but
since its connections with Dalvik depend on the Android version and its
definition is very complicated, in this work we just consider an interleaving
semantics for simplicity.
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pointer may be shared between different threads, performing
strong updates on the abstraction of the object indexed by the
pointer would be unsound. Our analysis allows strong updates
without sacrificing soundness by statically keeping track of a
set of pointers which are known to be local to a single thread:
only the abstractions of the most-recently-allocated objects
indexed by these pointers are amenable for strong updates.

B. Examples

By being conservative on the execution order of callbacks,
our analysis is able to soundly analyse the leaky example of
Table I. We recall it in Table III, where we annotate it with
a simplified version of the facts generated by the analysis:
the heap fact H provides a flow-insensitive heap abstraction,
while the Sink fact denotes communication to a sink. We use
line numbers to identify allocation sites and to index the heap
abstractions.

1 public class Leaky extends Activity {
H(1, {|Leaky;st 7→ NFS(2),st2 7→ NFS(3)|})
// flow-insensitivity on activity object

2 Storage st = new Storage();
H(2, {|Storage;s 7→ ""|}) // after the constructor

3 Storage st2 = new Storage();
H(3, {|Storage;s 7→ ""|}) // after the constructor

4 onRestart() { st2 = st; }
H(1, {|Leaky;st 7→ NFS(2),st2 7→ NFS(2)|}) // aliasing

5 onResume() { st2.s = getDeviceId(); }
H(2, {|Storage;s 7→ id|}) ∧ H(3, {|Storage;s 7→ id|})
// due to flow-insensitivity on activity object

6 onPause() { send(st.s, "http://www.myapp.com/");
Sink("") ∧ Sink(id) // the leak is detected

7 }
8 }

TABLE III
A SUBTLE INFORMATION LEAK (DETECTED)

In our analysis, activity objects are always abstracted in
a flow-insensitive way, which is crucial for soundness, since
we do not predict the execution order of their callbacks.
When the activity is created, an abstract flow-insensitive heap
fact H(1, {|Leaky;st 7→ NFS(2),st2 7→ NFS(3)|}) is
introduced, and two facts H(2, {|Storage;s 7→ ""|}) and
H(3, {|Storage;s 7→ ""|}) abstract the objects pointed by
the activity fields st and st2. Then the life-cycle events are
abstracted: the onRestart method performs a weak update
on the activity object, adding a fact H(1, {|Leaky;st 7→
NFS(2),st2 7→ NFS(2)|}) which tracks aliasing; after the
onResume method, st can thus point to two possible ob-
jects, as reflected by the abstract flow-insensitive heap facts
generated at line 2 and at line 5. Since the latter fact tracks a
sensitive value in the field s, the leak is caught in onPause.

Our analysis can also precisely deal with the benign ex-
ample of Table II thanks to recency abstraction. We show a
simplified version of the facts generated by the analysis in Ta-
ble IV. If our static analysis only used a traditional allocation-
site abstraction, the benefits of flow-sensitivity would be
voided by the presence of the “for” loop in the code. Indeed,
the allocation site of c would need to identify all the concrete
objects allocated therein, hence a traditional static analysis

could not perform strong updates on c.phone without break-
ing soundness and would raise a false alarm on the code.

1 public class Anon extends Activity {
H(1, {|Anon;m 7→ NFS(2)|})
// flow-insensitivity on activity object

2 Contact[] m = new Contact[]();
H(2, []) // new empty array is created

3 onStart() {
LState3(c 7→ null; 5 7→ ⊥)
// no allocated contact at location 5 yet

4 for (int i = 0; i < contacts.length(); i++) {
LState4(c 7→ null; 5 7→ ⊥) ∧ LState4(c 7→ NFS(5); 5 7→ ⊥)
// loop invariant (see below)

5 Contact c = contacts.getContact(i);
LState5(c 7→ FS(5); 5 7→ oc) // flow-sensitivity

6 c.phone = anonymise(c.phone);
LState6(c 7→ FS(5); 5 7→ oc{phone 7→ ""}) // strong update

7 m[i] = c;
LState7(c 7→ NFS(5); 5 7→ ⊥) ∧ H(5, oc{phone 7→ ""}) ∧
H(2, [NFS(5)]) // lifting is performed

8 }
9 send(m, "http://www.cool-apps.com/");
Sink([oc{phone 7→ ""}]) // no leak is detected

10 }
11 }

TABLE IV
ANONYMIZING CONTACT INFORMATION (ALLOWED)

The local state fact LStatepp provides a flow-sensitive
abstraction of the state of the registers and the heap at program
point pp. Recall that activity objects are always abstracted in
a flow-insensitive fashion, therefore the Contact array m is
also abstracted by a flow-insensitive heap fact H(2, []). At each
loop iteration, our static analysis abstracts the most-recently-
allocated Contact object at line 5 in a flow-sensitive fashion.
This is done by putting the abstract flow-sensitive location
FS(5) in c and by storing the abstraction of the Contact
object oc in the flow-sensitive local state abstraction LState5,
using its allocation site 5 as a key. This allows us to perform a
strong update on the c.phone field at line 6, overwriting the
private information with a public one. At line 7 the program
stores the public object in the array m, which is abstracted by
a flow-insensitive heap fact: to preserve soundness, the flow-
sensitive abstraction of oc is lifted (downgraded) to a flow-
insensitive abstraction by generating a flow-insensitive heap
fact H(5, oc[phone 7→ ""]) and by changing the abstraction
of c from FS(5) to NFS(5). We then perform a weak update
on the array stored in m by generating a flow-insensitive heap
fact H(2, [NFS(5)]). Thanks to the previous strong update,
however, the end result is that m only stores public information
at the end of the loop and no leak is detected.

III. CONCRETE SEMANTICS

Our static analysis is defined on top of an extension of
µ-DalvikA, a formal model of a core fragment of the Android
ecosystem [6]. It includes the main bytecode instructions of
Dalvik, the register-based virtual machine running Android
applications, and a few important API methods. Moreover,
it captures the life-cycle of the most common and complex
application components (activities), as well as inter-component
communication based on asynchronous messages (intents, with
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a dictionary-like structure). Our extension of µ-DalvikA adds
two more ingredients to the model: multi-threading and excep-
tions, which are useful to get a full account of the control flow
of Android applications. For space reasons, the presentation
focuses on a relatively high-level overview of our extensions:
the formal details, including the full operational semantics, are
provided in Appendix ??.

A. Basic Syntax

We write (ri)
i≤n to denote the sequence r1, . . . , rn. When

the length of the sequence is unimportant, we simply write
r∗. Given a sequence r∗, rj stands for its j-th element
and r∗[j 7→ r′] denotes the sequence obtained from r∗ by
substituting its j-th element with r′. We let ki 7→ vi denote
a key-value binding and we represent partial maps using a
sequence of key-value bindings (ki 7→ vi)

∗, where all the
keys ki are pairwise distinct; the order of the keys in a partial
map is immaterial.

We introduce in Table V a few basic syntactic categories.
A program P is a sequence of classes. A class cls c ≤
c′ imp c∗ {fld∗; mtd∗} consists of a name c, a super-class c′,
a sequence of implemented interfaces c∗, a sequence of fields
fld∗, and a sequence of methods mtd∗. A method m : τ∗

n−→
τ {st∗} consists of a name m, the type of its arguments τ∗,
the return type τ , and a sequence of statements st∗ defining
the method body; the syntax of statements is explained below.
The integer n on top of the arrow declares how many registers
are used by the method. Observe that field declarations f : τ
include the type of the field. A left-hand side lhs is either a
register r, an array cell r1[r2], an object field r.f , or a static
field c.f , while a right-hand side rhs is either a left-hand side
lhs or a primitive value prim .

P ::= cls∗

cls ::= cls c ≤ c′ imp c∗ {fld∗; mtd∗}
τprim ::= bool | int | . . .
τ ::= c | τprim | array[τ ]
fld ::= f : τ

mtd ::= m : τ∗
n−→ τ {st∗}

lhs ::= r | r[r] | r.f | c.f
prim ::= true | false | . . .
rhs ::= lhs | prim

TABLE V
BASIC SYNTACTIC CATEGORIES

Table VI reports the syntax of selected statements, along
with a brief intuitive explanation of their semantics. Observe
that statements do not operate directly on values, but rather on
the content of the registers of the Dalvik virtual machine. The
extensions with respect to [6] are in bold and are discussed
in more detail in the following. Some of the next definitions
are dependent on a program P , but we do not make this
dependency explicit to keep the notation more concise.

B. Local Reduction

a) Notation: Table VII shows the main semantic domains
used in the present section. We let p range over pointers from a
countable set Pointers. A program point pp is a triple c,m, pc
including a class name c, a method name m and a program

counter pc (a natural number identifying a specific statement
of the method). Annotations λ are auxiliary information with
no semantic import, their use in the static analysis is discussed
in Section IV. A location ` is an annotated pointer pλ and a
value v is either a primitive value or a location.

A local state L = 〈pp · u∗ · st∗ · R〉 stores the state
information of an invoked method, run by a given thread or
activity. It is composed of a program point pp, identifying the
currently executed statement; the method calling context u∗,
which keeps track of the method arguments and is only used in
the static analysis; the method body st∗, defining the method
implementation; and a register state R, mapping registers to
their content. Registers are local to a given method invocation.

A local state list L# is a list of local states. It is used to keep
track of the state information of all the methods invoked by a
given thread or activity. The call stack α is modeled as a local
state list L#, possibly qualified by the AbNormal(·) modifier
if the thread or activity is recovering from an exception.

Coming to memory, we define the heap H as a partial map
from locations to memory blocks. There are three types of
memory blocks in the formalism: objects, arrays and intents.
An object o = {|c; (fτ 7→ v)∗|} stores its class c and a mapping
between fields and values. Fields are annotated with their type,
which is typically omitted when unneeded. An array a = τ [v∗]
contains the type τ of its elements and the sequence of the
values v∗ stored into it. An intent i = {|@c; (k 7→ v)∗|} is
composed by a class name c, identifying the intent recipient,
and a sequence of key-value bindings (k 7→ v)∗, defining the
intent payload (a dictionary). The static heap S is a partial
map from static fields to values.

Finally, we have local configurations Σ = ` ·α ·π ·γ ·H ·S,
representing the full state of a specific activity or thread. They
include a location `, pointing to the corresponding activity
or thread object; a call stack α; a pending activity stack π,
which is a list of intents keeping track of all the activities that
have been started; a pending thread stack γ, which is a list
of pointers to the threads which have been started; a heap H ,
storing memory blocks; and a static heap S, storing the values
of static fields.

We use several substitution notations in the reduction rules,
with an obvious meaning. The only non-standard notations are
Σ+, which stands for Σ where the value of pc is replaced by
pc + 1 in the top-most local state of the call stack, and the
substitution of registers Σ[rd 7→ u], which sets the value of
the register rd to u in the top-most local state of the call stack.
This reflects the idea that the computation is performed on the
local state of the last invoked method.

b) Local Reduction Relation: The local reduction rela-
tion Σ Σ′ models the evolution of a local configuration Σ
into a new local configuration Σ′ as the result of a computation
step. The definition of the local reduction relation uses two
auxiliary relations:
• ΣJrhsK, which evaluates a right-hand side expression rhs

in the local configuration Σ;
• Σ, st ⇓ Σ′, which executes the statement st on the local

configuration Σ to produce Σ′.
The simplest rule defining a local reduction step Σ Σ′ just
fetches the next statement st to run and performs a look-up
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st ::=
goto pc unconditionally jump to program counter pc invoke ro m r∗ invoke method m of the object in ro with args r∗
if4 r1 r2 then pc jump to program counter pc if r1 4 r2 return get the value of the special return register rres
move lhs rhs move rhs into lhs newintent ri c put a pointer to a new intent for class c in ri
unop� rd rs compute �rs and put the result in rd put-extra ri rk rv bind the value of rv to key rk of the intent in ri
binop⊕ rd r1 r2 compute r1 ⊕ r2 and put the result in rd get-extra ri rk τ get the τ -value bound to key rk of the intent in ri
new rd c put a pointer to a new object of class c in rd start-act ri start a new activity by sending the intent in ri
newarray rd rl τ put a pointer to a new τ -array of length rl in rd start-thread rt start the thread in rt
throw re throw the exception stored in re interrupt rt interrupt the thread in rt
move-except re store a pointer to the last thrown exception in re join rt join the current thread with the thread in rt

TABLE VI
SYNTAX AND INFORMAL SEMANTICS OF SELECTED STATEMENTS

Pointers p ∈ Pointers
Program counters pc ∈ N
Program points pp ::= c,m, pc
Annotations λ ::= pp | c | in(c)
Locations ` ::= pλ
Values u, v ::= prim | `
Register states R ::= (r 7→ v)∗

Local states L ::= 〈pp · u∗ · st∗ ·R〉
Local state lists L# ::= ε | L :: L#

Call stacks α ::= L# | AbNormal(L#)
Objects o ::= {|c; (fτ 7→ v)∗|}
Arrays a ::= τ [v∗]
Intents i ::= {|@c; (k 7→ v)∗|}
Memory blocks b ::= o | a | i
Heaps H ::= (` 7→ b)∗

Static heaps S ::= (c.f 7→ v)∗

Pending activity stacks π ::= ε | i :: π
Pending thread stacks γ ::= ε | ` :: γ
Local configurations Σ ::= ` · α · π · γ ·H · S

TABLE VII
SEMANTIC DOMAINS FOR LOCAL REDUCTION

on the auxiliary relation Σ, st ⇓ Σ′. Formally, assuming a
function get-stm(Σ) fetching the next statement based on the
program counter of the top-most local state in Σ, we have:

(R-NEXTSTM)
Σ, get-stm(Σ) ⇓ Σ′

Σ Σ′

We show a subset of the new local reduction rules added to
µ-DalvikA in Table VIII and we explain them below.

c) Exception Rules: In Dalvik, method bodies can con-
tain special annotations for exception handling, specifying
which exceptions are caught and where, as well as the program
counter of the corresponding exception handler (handlers are
part of the method body). In our formalism, we assume the
existence of a partial map ExcptTable(pp, c) = pc which
provides, for all program points pp where exceptions can be
thrown and for all classes c extending the Throwable inter-
face, the program counter pc of the corresponding exception
handler. If no handler exists, then ExcptTable(pp, c) = ⊥.
Moreover, all local states contain a special register rexcpt that
is only accessed by the exception handling rules: this stores
the location of the last thrown exception.

An exception object stored in re can be thrown by the
statement throw re using rule (R-THROW): it checks that
re contains the location of a (throwable) object, stores this lo-
cation into the register rexcpt and moves the local configuration
into an abnormal state. After entering an abnormal state, there

are two possibilities: if there exists an handler for the thrown
exception, we exit the abnormal state and jump to the program
counter of the exception handler using rule (R-CAUGHT);
otherwise, the exception is thrown back to the method caller
using rule (R-UNCAUGHT). Finally, the location of the last
thrown exception object can be copied from the register rexcpt
into the register re by the statement move-except re, as
formalized by rule (R-MOVEEXCEPTION)

d) Thread Rules: Our formalism covers the core methods
of the Java Thread API [18]: they enable thread spawning
and thread communication by means of interruptions and
synchronizations. Rule (R-STARTTHREAD) models the state-
ment start-thread rt: it allows a thread to be started
by simply pushing the location of the thread object stored in
rt on the pending thread stack. The actual execution of the
thread is left to the virtual machine, which will spawn it at an
unpredictable point in time, as we discuss in the next section.
The statement interrupt rt sets the interrupt field (named
inte) of the thread object whose location is stored in rt to
true , as formalized by rule (R-INTERRUPTTHREAD). We now
describe the semantics of thread synchronizations. If the thread
t′ calling join rt was not interrupted at some point, rule (R-
JOINTHREAD) checks whether the thread whose location is
stored in rt has finished; if this is the case, it resumes the
execution of t′, otherwise t′ remains stuck. If instead t′ was
interrupted before calling join rt, rule (R-INTERRUPTJOIN)
performs the following operations: the inte field of t′ is
reset to false , an IntExcpt exception is thrown (this creates
a new exception object) and the local configuration enters an
abnormal state.

C. Global Reduction

a) Notation: Table IX introduces the main semantic
domains used in the present section. First, we assume the
existence of a set of activity states ActStates, which is used
to model the Android activity life-cycle (see [31]). Then we
have two kinds of frames, modeling running processes. An
activity frame ϕ = 〈`, s, π, γ, α〉 describes the state of an
activity: it includes a location `, pointing to the activity object;
the activity state s; a pending activity stack π, representing
other activities started by the activity; a pending thread stack
γ, representing threads spawned by the activity; and a call
stack α. A thread frame ψ = ⟪`, `′, π, γ, α⟫ describes a
running thread: it includes a location `, pointing to the activity
object that started the thread; a location `′ pointing to the
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(R-THROW)
` = ΣJreK H(`) = {|c′; (f 7→ v)∗|}

Σ,throw re ⇓ Σ[α 7→ AbNormal(α)][rexcpt 7→ `]

(R-CAUGHT)
` = ΣAJrexcptK H(`) = {|c′; (f 7→ v)∗|}

ExcptTable(c,m, pc, c′) = pc′ αc = 〈c,m, pc′ · u∗ · st∗ ·R〉 :: α′

ΣA  ΣA[αA 7→ αc]

(R-UNCAUGHT)
` = ΣAJrexcptK H(`) = {|c′; (f 7→ v)∗|}

ExcptTable(c,m, pc, c′) = ⊥
ΣA  ΣA[αA 7→ AbNormal(α′)][rexcpt 7→ `]

(R-MOVEEXCEPTION)
` = ΣJrexcptK

Σ,move-except re ⇓ Σ+[re 7→ `]

(R-STARTTHREAD)
` = ΣJrtK

H(`) = {|c′; (f 7→ v)∗|} γ′ = ` :: γ

Σ,start-thread rt ⇓ Σ+[γ 7→ γ′]

(R-INTERRUPTTHREAD)
` = ΣJrtK H(`) = {|c′; (f 7→ v)∗, inte 7→ _|}
H′ = H[` 7→ {|c′; (f 7→ v)∗, inte 7→ true|}]

Σ,interrupt rt ⇓ Σ+[H 7→ H′]

(R-JOINTHREAD)
H(`r) = {|cr; (fr 7→ vr)

∗, inte 7→ false|}
` = ΣJrtK H(`) = {|c′; (f 7→ v)∗, finished 7→ true|}

Σ,join rt ⇓ Σ+

(R-INTERRUPTJOIN)
H(`r) = {|cr; (fr 7→ vr)

∗, inte 7→ true|}
o = {|cr; (fr 7→ vr)

∗, inte 7→ false|} pc,m,pc 6∈ dom(H)
H′ = H, pc,m,pc 7→ {|IntExcpt; |} αc = AbNormal(α[rexcpt 7→ pc,m,pc ])

Σ,join rt ⇓ Σ[α 7→ αc, H 7→ H′[`r 7→ o]]

Convention: let Σ = `r ·α·π·γ ·H ·S with α = 〈c,m, pc ·u∗ ·st∗ ·R〉 :: α′ and ΣA = `r ·αA ·π·γ ·H ·S with αA = AbNormal(〈c,m, pc ·u∗ ·st∗ ·R〉 :: α′).

TABLE VIII
SMALL STEP SEMANTICS OF EXTENDED µ-DALVIKA - EXCERPT

thread object; a pending activity stack π, representing activities
started by the thread; a pending thread stack γ, representing
other threads spawned by the thread; and a call stack α.

Activity frames are organized in an activity stack Ω, con-
taining all the running activities; one of the activities may be
singled out as active, represented by an underline, and it is
scheduled for execution. We assume that each Ω contains at
most one underlined activity frame. Thread frames, instead,
are organized in a thread pool Ξ, containing all the running
threads. A configuration Ψ = Ω ·Ξ ·H ·S includes an activity
stack Ω, a thread pool Ξ, a heap H and a static heap S. It
represents the full state of an Android application.

Activity states s ∈ ActStates
Activity frames ϕ ::= 〈`, s, π, γ, α〉 | 〈`, s, π, γ, α〉
Activity stacks Ω ::= ϕ | ϕ :: Ω
Thread frames ψ ::= ⟪`, `′, π, γ, α⟫
Thread pools Ξ ::= ∅ | ψ :: Ξ
Configurations Ψ ::= Ω · Ξ ·H · S

TABLE IX
SEMANTIC DOMAINS FOR GLOBAL REDUCTION

b) Global Reduction Relation: The global reduction re-
lation Ψ⇒ Ψ′ models the evolution of a configuration Ψ into
a new configuration Ψ′, either by executing a statement in a
thread or activity according to the local reduction rules, or as
the result of processing life-cycle events of the Android plat-
form, including user inputs, system callbacks, inter-component
communication, etc.

Before presenting the global reduction rules, we define a
few auxiliary notions. First, we let lookup be the function such
that lookup(c,m) = (c′, st∗) iff c′ is the class obtained when
performing dispatch resolution of the method m on an object
of type c and st∗ is the corresponding method body. Then,
we assume a function sign such that sign(c,m) = τ∗

n−→ τ
iff there exists a class clsi such that clsi = cls c ≤

c′ imp c∗ {fld∗; mtd∗,m : τ∗
n−→ τ {st∗}}. Finally, we let a

successful call stack be the call stack of an activity or thread
which has completed its computation, as formalized by the
following definition.

Definition 1 A call stack α is successful if and only if α =
〈pp · u∗ · return ·R〉 :: ε for some pp, u∗ and R. We let α
range over successful call stacks.

The core of the global reduction rules are taken from [6],
extended with a few simple rules used, e.g., to manage the
thread pool. The main new rules are given in Table X and the
full set can be found in Appendix ??. We start by describing
rule (A-THREADSTART), which models the starting of a new
thread by some activity. Let `′ be a pointer to a pending
thread spawned by an activity identified by the pointer `, the
rule instantiates a new thread frame ψ = ⟪`, `′, ε, ε, α′⟫ with
empty pending activity stack and empty pending thread stack,
executing the run method of the thread object referenced by
`′. We then have two other rules: rule (T-REDUCE) allows the
reduction of any thread in the thread pool, using the reduction
relation for local configurations; rule (T-KILL) allows the
system to remove a thread which has finished its computations,
by checking that its call stack is successful.

IV. ABSTRACT SEMANTICS

Our analysis takes as input a program P and generates a
set of Horn clauses (|P |) that over-approximate the concrete
semantics of P . We can then use an automated theorem prover
such as Z3 [28] to show that (|P |), together with a set of facts
∆ over-approximating the initial state of the program, does
not entail a formula φ representing the reachability of some
undesirable program state (e.g., leaking sensitive information).
By the over-approximation, the unsatisfiability of the formula
ensures that also P does not reach such a program state.
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(A-THREADSTART)
ϕ = 〈`, s, π, γ :: `′ :: γ′, α〉 ϕ′ = 〈`, s, π, γ :: γ′, α〉 ψ = ⟪`, `′, ε, ε, α′⟫ H(`′) = {|c′; (f 7→ v)∗|}

lookup(c′, run) = (c′′, st∗) sign(c′′, run) = Thread loc−−→ Void α′ = 〈c′′, run, 0 · `′ · st∗ · (rk 7→ 0)k≤loc, rloc+1 7→ `′〉
Ω :: ϕ :: Ω′ · Ξ ·H · S ⇒ Ω :: ϕ′ :: Ω′ · ψ :: Ξ ·H · S

(T-REDUCE)
`t · α · π · γ ·H · S  `t · α′ · π′ · γ′ ·H′ · S′

Ω · Ξ :: ⟪`, `t, π, γ, α⟫ :: Ξ′ ·H · S ⇒ Ω · Ξ :: ⟪`, `t, π′, γ′, α′⟫ :: Ξ′ ·H′ · S′

(T-KILL)
H(`′) = {|c; (f 7→ v)∗, finished 7→ _|} H′ = H[`′ 7→ {|c; (f 7→ v)∗, finished 7→ true|}]

Ω · Ξ :: ⟪`, `′, ε, ε, α⟫ :: Ξ′ ·H · S ⇒ Ω · Ξ :: Ξ′ ·H′ · S

TABLE X
NEW GLOBAL REDUCTION RULES - EXCERPT

A. Syntax of Terms

We assume two disjoint countable sets of variables Vars
and BVars. The syntax of the terms of the abstract semantics
is defined in Table XI and described below.

Boolean variables xb ∈ BVars
Variables x ∈ Vars
Abstract elements d̂ ∈ D̂
Booleans bb ::= 0 | 1 | xb
Abstract locations λ̂ ::= FS(λ) |NFS(λ)

Abstract values û, v̂ ::= d̂ | x | f(v̂∗)
Abstract objects ô ::= {|c; (fτ 7→ v̂)∗|}
Abstract arrays â ::= τ [v̂]

Abstract intents î ::= {|@c; v̂|}
Abstract blocks b̂ ::= ô | â | î
Abstract flow-sensitive blocks l̂ ::= b̂ | ⊥
Abstract flow-sensitive heap ĥ ::= (pp 7→ l̂)∗

Abstract filter k̂ ::= (pp 7→ bb)∗

TABLE XI
SYNTAX OF TERMS

Each location pλ is abstracted by an abstract location λ̂,
which is either an abstract flow-sensitive location FS(λ) or an
abstract flow-insensitive location NFS(λ). Recall the syntax of
annotations: in the concrete semantics, λ = c means that pλ
stores an activity of class c; λ = in(c) means that pλ stores an
intent received by an activity of class c; and λ = pp means that
pλ stores a memory block (object, array or intent) created at
program point pp. Only the latter elements are amenable for a
sound flow-sensitive analysis, since activity objects are shared
by all the activity callbacks and received intents are shared
between at least two activities, but the analysis assumes the
concurrent execution of all callbacks and activities.

The analysis assumes a bounded lattice (D̂,v,t,u,>,⊥)
for approximating concrete values such that the abstract do-
main D̂ contains at least all the abstract locations λ̂ and
the abstractions p̂rim of any primitive value prim . We also
assume a set of interpreted functions f , containing at least
sound over-approximations �̂, ⊕̂, 4̂ of the unary, binary and
comparison operators �,⊕,4. Abstract values v̂ are elements
d̂ of the abstract domain D̂, variables x from Vars or function
applications of the form f(v̂∗).

The abstraction of objects ô is field-sensitive, while the
abstraction of arrays â and intents î is field-insensitive. The

reason is that the structure of objects is statically known thanks
to their type, while array lengths and intent fields (strings)
may only be known at runtime. It would clearly be possible
to use appropriate abstract domains to have a more precise
representation of array lengths and intent fields, but we do not
do it for the sake of simplicity. An abstract block b̂ can be an
abstract object ô, an abstract array â or an abstract intent î.
An abstract flow-sensitive heap ĥ is a total mapping from the
set of allocation sites pp to abstract memory blocks b̂ or the
symbol ⊥, representing the lack of a flow-sensitive abstraction
of the memory blocks created at pp.

There is just one syntactic element in Table XI which we
did not discuss yet: abstract filters. Abstract filters k̂ are total
mappings from the set of allocation sites pp to boolean flags
bb. They are technically needed to keep track of the allocation
sites whose memory blocks must be downgraded to a flow-
insensitive analysis when returning from a method call. The
downgrading mechanism, called lifting of an allocation site, is
explained in Section IV-C.

B. Ingredients of the Analysis
a) Overview: Our analysis is context-sensitive, which

means that the abstraction of the elements in the call stack
keeps track of a representation of their calling context. In this
work, contexts are defined as tuples (λ̂t, û

∗), where λ̂t is an
abstraction of the location storing the thread or activity which
called the method, while û∗ is an abstraction of the method
arguments. Abstracting the calling thread or activity increases
the precision of the analysis, in particular when dealing with
the join rt statement for thread synchronization.

Moreover, our analysis is flow-sensitive and computes a
different over-approximation ĥ of the state of the heap at each
reachable program point, satisfying the following invariant:
for each allocation site pp, if ĥ(pp) = b̂, then b̂ is an over-
approximation of the most-recently allocated memory block
at pp and this memory block is local to the allocating thread
or activity. Otherwise, ĥ(pp) = ⊥ and the memory blocks
allocated at pp, if any, do not admit a flow-sensitive analysis.
These memory blocks are then abstracted by an abstract flow-
insensitive heap, defining an over-approximation of the state
of the heap which is valid at all reachable program points. As
such, the abstract flow-insensitive heap is not indexed by a
program point.
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f ::=

LStatepp((λ̂, v̂∗); v̂∗; ĥ; k̂) Abstract local state
AStatepp((λ̂, v̂∗); v̂∗; ĥ; k̂) Abstract abnormal state
Resc,m((λ̂, v̂∗); v̂; ĥ; k̂) Abstract result of method call
Uncaughtpp((λ̂, v̂∗); v̂; ĥ; k̂) Abstract uncaught exception
RHSpp(v̂) Abstract value of right-hand side
LiftHeap(ĥ; k̂) Abstract heap lifting
Reach(v̂; ĥ; k̂) Abstract heap reachability
GetBlki(v̂∗; ĥ; λ̂; b̂) Abstract heap look-up
H(λ, b̂) Abstract flow-insensitive heap entry
Sc,f(v̂) Abstract static field
Ic (̂i) Abstract pending activity
T(λ, ô) Abstract pending thread
ûv v̂ Partial ordering on abstract values
τ ≤ τ ′ Subtyping fact

TABLE XII
ANALYSIS FACTS

For space reasons, we just present selected excerpts of the
analysis in the remaining of this section: the full analysis
specification is given in Appendix ??.

b) Analysis Facts: The syntax of the analysis facts f is
defined in Table XII. The fact LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂)
is used to abstract local states: it denotes that, if the method
m of the class c is invoked in the context (λ̂t, û

∗), the state
of the registers at the pc-th statement is over-approximated
by v̂∗, while ĥ provides a flow-sensitive abstraction of the
state of the heap and k̂ tracks the set of the allocation sites
which must be lifted after returning from the method. The fact
AStatec,m,pc((λ̂t, û

∗); v̂∗; ĥ; k̂) has an analogous meaning, but
it abstracts local states trying to recover from an exception.
The fact Resc,m((λ̂t, û

∗); v̂; ĥ; k̂) states that, if the method m
of the class c is invoked in the context (λ̂t, û

∗), its return value
is over-approximated by v̂; the information ĥ and k̂ has the
same meaning as before and it is used to update the abstract
state of the caller after returning from the method m. The fact
Uncaughtc,m,pc((λ̂t, û

∗); v̂; ĥ; k̂) ensures that, if the method m
of the class c is invoked in the context (λ̂t, û

∗), it throws an
uncaught exception at the pc-th statement and the location of
the exception object is over-approximated by v̂; here, ĥ and
k̂ are needed to update the abstract state of the caller of m,
which becomes in charge of handling the uncaught exception.
The fact RHSpp(v̂) states that v̂ over-approximates the right-
hand side of a move lhs rhs statement at program point pp.

We then have a few facts used to abstract the heap and lift
the allocation sites. The facts LiftHeap(ĥ; k̂), Reach(v̂; ĥ; k̂)
and GetBlki(v̂

∗; ĥ; λ̂; b̂) are the most complicated and peculiar,
so they are explained in detail later on. The fact H(λ, b̂) models
the abstract flow-insensitive heap: it states that the location pλ
stores a memory block over-approximated by b̂ at some point
of the program execution. The fact Sc,f(v̂) states that the static
field f of class c contains a value over-approximated by v̂ at
some point of the program execution.

Finally, the fact Ic(̂i) tracks that an activity of class c has
sent an intent over-approximated by î. The fact T(λ, ô) tracks
that an activity or thread has started a new thread stored at
some location pλ and over-approximated by ô. We then have
standard partial order facts ûv v̂ and subtyping facts τ ≤ τ ′.

c) Horn Clauses: We define Horn clauses as logical
formulas of the form ∀x1, . . . ,∀xm.f1∧. . .∧fn =⇒ f without
free variables. In order to improve readability, we always
omit the universal quantifiers in front of Horn clauses and we
distinguish constants from universally quantified variables by
using a sans serif font for constants, e.g., we write c to denote
some specific class c. When an element in a Horn clause is
unimportant, we just replace it with an underscore (_). Also,
we write ∀x1, . . . ,∀xm.f1 ∧ . . .∧ fn =⇒ f ′1 ∧ . . .∧ f ′k for the
set {∀x1, . . . ,∀xm.f1 ∧ . . . ∧ fn =⇒ f ′i | i ∈ [1, k]}.

d) Abstract Programs: We define abstract programs ∆
as sets of facts and Horn clauses, where facts over-approximate
program states, while Horn clauses over-approximate the con-
crete semantics of the analysed program.

C. The Lifting Mechanism

The lifting mechanism is the central technical contribution
of the static analysis. It is convenient to abstract for a moment
from the technical details and explain it in terms of three
separate sequential steps, even though in practice these steps
are interleaved together upon Horn clause resolution.

a) Computing the Abstract Filter: Let ppa be the allo-
cation site to lift, i.e., assume that the most-recently-allocated
memory block b at ppa must be downgraded to a flow-
insensitive analysis, for example because it was shared with
another activity or thread. Hence, all the memory blocks which
can be reached by following a chain of locations (pointers)
starting from any location in b must also be downgraded for
soundness. In the analysis, we over-approximate this set of
locations with facts of the form Reach(v̂; ĥ; k̂), meaning that
the abstract filter k̂ represents a subset of the flow-sensitive
abstract locations which are reachable along ĥ from any flow-
sensitive abstract location over-approximated by v̂. The Horn
clauses deriving Reach(v̂; ĥ; k̂) are in Table XIII and should be
read as a recursive computation, whose goal is to find the set of
all the abstract flow-sensitive locations reachable from v̂ and
hence a sound over-approximation of the set of the allocation
sites which need to be lifted. The definition uses the function
k̂ t̂ k̂′, computing the point-wise maximum between k̂ and k̂′.

b) Performing the Lifting: Once Reach(FS(ppa); ĥ; k̂)
has been recursively computed, the analysis introduces a fact
LiftHeap(ĥ; k̂) to force the lifting of the allocation sites pp
such that k̂(pp) = 1, moving their abstract blocks from the
abstract flow-sensitive heap ĥ to the abstract flow-insensitive
heap. The lifting is formalized by the following Horn clause:

LiftHeap(ĥ; k̂) ∧ k̂(pp) = 1 ∧ ĥ(pp) = b̂ =⇒ H(pp; b̂)

c) Housekeeping: Finally, we need to update the data
structures used by the analysis to reflect the lifting, using the
computed abstract filter k̂ to update:

1) the current abstraction of the registers v̂∗. This is done
by using a function lift(v̂∗; k̂), which updates v̂∗ so that
all the abstract flow-sensitive locations FS(pp) such that
k̂(pp) = 1 are changed to NFS(pp). This ensures that the
next abstract heap accesses via the register abstractions
perform a look-up on the abstract flow-insensitive heap
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Reach(p̂rim; ĥ; 0∗) Reach(NFS(λ); ĥ; 0∗) Reach(FS(pp); ĥ; 0∗[pp 7→ 1]) Reach(û; ĥ; k̂) ∧ ûv v̂ =⇒ Reach(v̂; ĥ; k̂)

Reach(v̂; ĥ; k̂) ∧ Reach(v̂; ĥ; k̂′) =⇒ Reach(v̂; ĥ; k̂ t̂ k̂′)
ĥ(pp) = {|c; _, f 7→ v̂|}

ĥ(pp) = τ [v̂]

ĥ(pp) = {|@c; v̂|}

 ∧ Reach(v̂; ĥ; k̂) =⇒ Reach(FS(pp); ĥ; k̂)

TABLE XIII
HORN CLAUSES USED TO DERIVE THE PREDICATE Reach(v̂; ĥ; k̂)

k̂(pp) = 0

lift(FS(pp); k̂) = FS(pp)

k̂(pp) = 1

lift(FS(pp); k̂) = NFS(pp)

lift(NFS(λ); k̂) = NFS(λ) lift(p̂rim; k̂) = p̂rim

ûv v̂
lift(û; k̂)v lift(v̂; k̂)

∀i : lift(v̂i; k̂)) = ûi

lift(v̂∗; k̂) = û∗

TABLE XIV
AXIOMS REQUIRED ON THE FUNCTION lift(v̂∗; k̂)

for lifted allocation sites. Formally, we require the lift
function to satisfy the axioms in Table XIV;

2) the current abstract flow-sensitive heap ĥ. This is done
by the function hlift(ĥ; k̂), which replaces all the entries
of the form pp 7→ b̂ in ĥ with pp 7→ ⊥ if k̂(pp) = 1, thus
invalidating their flow-sensitive abstraction. If k̂(pp) = 0,
instead, the function calls lift(v̂; k̂) on all the abstract
values v̂ occurring in b̂, so that b̂ itself is still analysed
in a flow-sensitive fashion, but it is correctly updated to
reflect the lifting of its sub-components;

3) the current abstract filter k̂′. This is done by the function
k̂ t̂ k̂′, computing the point-wise maximum between k̂
and k̂′. This tracks the allocation sites which must be
lifted upon returning from the current method call, so
that also the caller can correctly update the abstraction
of its registers by using the lift function.

For simplicity, we just say that we lift some abstract value v̂
when we lift all the allocation sites pp such that FS(pp)v v̂.

d) Example: Assume integers are abstracted by their sign
and consider the following abstract flow-sensitive heap:

ĥ = pp1 7→ τ [FS(pp2)], pp2 7→ {|c; g 7→ FS(pp1), g′ 7→ +|}
pp3 7→ {|c′; f 7→ NFS(pp2), f ′ 7→ FS(pp4)|}
pp4 7→ {|c′; f 7→ FS(pp1), f ′ 7→ FS(pp3)|}

Assume we want to lift the allocation site pp1, the computation
of the abstract filter gives: k̂ = pp1 7→ 1, pp2 7→ 1, pp3 7→
0, pp4 7→ 0. The result of the lifting is then the following:

hlift(ĥ; k̂) = pp1 7→ ⊥, pp2 7→ ⊥,
pp3 7→ {|c′; f 7→ NFS(pp2), f ′ 7→ FS(pp4)|}
pp4 7→ {|c′; f 7→ NFS(pp1), f ′ 7→ FS(pp3)|}

D. Abstracting Local Reduction

a) Accessing the Abstract Heaps: We observe that in the
concrete semantics one often needs to read a location stored
in a register and then access the contents of that location
on the heap. In the abstract semantics we rely on a similar

mechanism, adapted to read from the correct abstract heap.
The fact GetBlki(v̂

∗; ĥ; λ̂; b̂) states that if v̂∗ is an over-
approximation of the content of the registers and ĥ is an
abstract flow-sensitive heap, then λ̂ is an abstract location
over-approximated by v̂i and b̂ is an abstract block over-
approximating the memory block that register i is pointing
to. Formally, this fact can be proved by the two Horn clauses
below, discriminating on the flow-sensitivity of λ̂:

FS(λ)v v̂i ∧ ĥ(λ) = b̂ =⇒ GetBlki(v̂
∗; ĥ;FS(λ); b̂)

NFS(λ)v v̂i ∧ H(λ, b̂) =⇒ GetBlki(v̂
∗; ĥ;NFS(λ); b̂)

b) Evaluation of Right-Hand Sides: The abstract se-
mantics needs to be able to over-approximate the evaluation
of right-hand sides. This is done via a translation 〈〈rhs〉〉pp
generating a set of Horn clauses, which over-approximate the
value of rhs at program point pp. For example, the following
translation rule generates one Horn clause which approximates
the content of the register ri at pp, based on the information
stored in the corresponding local state abstraction:

〈〈ri〉〉pp = {LStatepp(_; v̂∗; _; _) =⇒ RHSpp(v̂i)}

c) Standard Statements: The abstract semantics defines,
for each possible form of statement st , a translation (|st |)pp
into a set of Horn clauses which over-approximate the seman-
tics of st at program point pp. We start by discussing the top
part of Table XV, presenting the abstract semantics of some
statements considered in the original HornDroid paper [6]. We
focus in particular on the main additions needed to generalize
their abstraction to implement a flow-sensitive heap analysis:
• (|new rd c′|)pp : When allocating a new object at pp,

the abstraction of the object that was the most-recently
allocated one before the new allocation, if any, must
be downgraded to a flow-insensitive analysis. Therefore,
we lift the allocation site pp by computing an abstract
filter k̂′ via the Reach predicate and using it to perform
the lifting as described in Section IV-C. We then put in
the resulting abstract flow-sensitive heap a new abstract
object {|c′; (f 7→ 0̂τ )∗|} initialized to default values (0̂τ
represents the abstraction of the default value used to
populate fields of type τ ). The abstraction of the register
rd is set to the abstract flow-sensitive location FS(pp) to
enable a flow-sensitive analysis of the new most-recently-
allocated object;

• (|move ro.f rhs|)pp : We first use 〈〈rhs〉〉pp to generate
the Horn clauses over-approximating the value of rhs
at program point pp. Assume then we have the over-
approximation v̂′′ in a RHS fact. We have two possibili-
ties, based on the abstract value v̂o over-approximating
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• (|new rd c′|)c,m,pc =
{LStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ Reach(FS(c,m, pc); ĥ; k̂′)
=⇒ LiftHeap(ĥ; k̂′) ∧ LStatec,m,pc+1(_; lift(v̂∗; k̂′)[d 7→ FS(c,m, pc)]; hlift(ĥ; k̂′)[c,m, pc 7→ {|c′; (f 7→ 0̂τ )∗|}]; k̂ t̂ k̂′)}

• (|move ro.f rhs|)c,m,pc =
〈〈rhs〉〉c,m,pc ∪ {RHSc,m,pc(v̂′′) ∧ LStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ;FS(λ); {|c′; (f ′ 7→ û′)∗, f 7→ v̂′|}) =⇒
LStatec,m,pc+1(_; v̂∗; ĥ[λ 7→ {|c′; (f ′ 7→ û′)∗, f 7→ v̂′′|}; k̂)} ∪
{RHSc,m,pc(v̂′′) ∧ LStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ;NFS(λ); {|c′; (f ′ 7→ û′)∗, f 7→ v̂′|}) ∧ Reach(v̂′′; ĥ; k̂′) =⇒
H(λ, {|c′; (f ′ 7→ û′)∗, f 7→ v̂′′)|}) ∧ LiftHeap(ĥ; k̂′) ∧ LStatec,m,pc+1(_; lift(v̂∗; k̂′); hlift(ĥ; k̂′); k̂ t̂ k̂′)}

• (|return|)c,m,pc = {LStatec,m,pc((λ̂t, v̂∗call); v̂
∗; ĥ; k̂) =⇒ Resc,m((λ̂t, v̂∗call); v̂res; ĥ; k̂)}

• (|invoke ro m′ (rij )j≤n|)c,m,pc =

{LStatec,m,pc((λ̂t, _); v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ; _; {|c′; (f 7→ û)∗|}) ∧ c′ ≤ c′′ =⇒
LStatec′′,m′,0((λ̂t, (v̂ij )j≤n); (0̂k)k≤loc , (v̂ij )j≤n; ĥ; 0∗) | c′′ ∈ l̂ookup(m′) ∧ sign(c′′,m′) = (τj)

j≤n loc−−→ τ} ∪ (1)

{LStatec,m,pc((λ̂t, _); v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ; _; {|c′; (f 7→ û)∗|}) ∧ c′ ≤ c′′ ∧ Resc′′,m′ ((λ̂
′
t, ŵ
∗); v̂′res; ĥres; k̂res)

∧ λ̂t = λ̂′t ∧
(∧

j≤n v̂ij u ŵj 6v ⊥
)

=⇒ LStatec,m,pc+1((λ̂t, _); lift(v̂∗; k̂res)[res 7→ v̂′res]; ĥres; k̂ t̂ k̂res) | c′′ ∈ l̂ookup(m′)} ∪ (2)

{LStatec,m,pc((λ̂t, _); v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ; _; {|c′; (f 7→ û)∗|}) ∧ c′ ≤ c′′ ∧ Uncaughtc′′,m′ ((λ̂
′
t, ŵ
∗)); v̂′excpt; ĥres; k̂res)

∧ λ̂t = λ̂′t ∧
(∧

j≤n v̂ij u ŵj 6v ⊥
)

=⇒ AStatec,m,pc((λ̂t, _); lift(v̂∗; k̂res)[excpt 7→ v̂′excpt]; ĥres; k̂ t̂ k̂res) | c
′′ ∈ l̂ookup(m′)} (3)

• (|throw ri|)c,m,pc = {LStatec,m,pc(_; v̂∗; ĥ; k̂) =⇒ AStatec,m,pc(_; v̂∗[excpt 7→ v̂i]; ĥ; k̂)}
• (|start-thread ri|)c,m,pc =
{LStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ;NFS(λ); {|c′; (f 7→ û)∗|}) ∧ c′ ≤ Thread
=⇒ T(λ, {|c′; (f 7→ û)∗|}) ∧ LStatec,m,pc+1(_; v̂∗; ĥ; k̂)} ∪
{LStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ;FS(λ); {|c′; (f 7→ û)∗|}) ∧ c′ ≤ Thread ∧ Reach(FS(λ); ĥ; k̂′)
=⇒ T(λ, {|c′; (f 7→ û)∗|}) ∧ LiftHeap(ĥ; k̂′) ∧ LStatec,m,pc+1(_; lift(v̂∗; k̂′); hlift(ĥ; k̂′); k̂ t̂ k̂′)}

• (|join ri|)c,m,pc =

{LStatec,m,pc((NFS(λt), _); v̂∗; ĥ; k̂) ∧ H(λt, {|c′; (f 7→ û)∗, inte 7→ v̂′|}) ∧ f̂alse v v̂′ =⇒ LStatec,m,pc+1((NFS(λt), _); v̂∗; ĥ; k̂)} ∪
{LStatec,m,pc((NFS(λt), _); v̂∗; ĥ; k̂) ∧ H(λt, {|c′; (f 7→ û)∗, inte 7→ v̂′|}) ∧ t̂rue v v̂′ =⇒
H(c,m, pc; {|IntExcpt; |}) ∧ AStatec,m,pc((NFS(λt), _); v̂∗[excpt 7→ NFS(c,m, pc)]; ĥ; k̂) ∧ H(λt, {|c′; (f 7→ û)∗, inte 7→ f̂alse|})}

TABLE XV
ABSTRACT SEMANTICS OF STATEMENTS - EXCERPT

the content of the register ro. If GetBlko returns an
abstract flow-sensitive location FS(λ), then we perform
a strong update on the corresponding element of the ab-
stract flow-sensitive heap. If GetBlko returns an abstract
flow-insensitive location NFS(λ), we use λ to get an
abstract heap fact H(λ, {|c′; (f ′ 7→ û′)∗, f 7→ v̂′|}) and we
update the field f of this object in a new heap fact: this
implements a weak update, since the old fact is still valid.
The abstract value v̂′′ moved to the flow-insensitive heap
fact may contain abstract flow-sensitive locations, which
must be downgraded by lifting v̂′′ when propagating the
local state abstraction to the next program point;

• (|return|)pp : The callee generates a return fact Res
containing the calling context (λ̂t, v̂

∗
call), the abstract

value v̂res over-approximating the return value, its abstract
flow-sensitive heap ĥ and its abstract filter k̂ recording
which allocation sites were lifted during its computation.
All this information is propagated to the analysis of the
caller, as we explain in the next item;

• (|invoke ro m′ (rij )j≤n|)pp : We statically know the
name m′ of the invoked method, but not the class of
the receiver object in the register ro. In part (1) we over-
approximate dynamic dispatching as follows: we collect
all the abstract objects accessible via the abstraction v̂o
of the content of the register ro, but we only consider as
possible receivers the ones whose type is a subtype of
a class c′′ ∈ l̂ookup(m′), where l̂ookup(m′) just returns
the set of classes which define or inherit a method named
m′. For all of them, we introduce an abstract local state
fact LState over-approximating the local state of the
invoked method, instantiating it with the calling context,

the abstract flow-sensitive heap of the caller and an empty
abstract filter.
Part (2) handles the propagation of the abstraction of the
return value from the callee to the caller. This is done by
using the Res fact generated by the return statement
of the callee: the caller matches appropriate callees by
checking the context of the Res fact. Specifically, the
caller checks that: (i) its own abstraction λ̂t matches the
abstraction λ̂′t in the context of the callee, and (ii) that
the meet of its arguments v̂ij and the context arguments
ŵj is not ⊥. This prevents a callee from returning to a
caller that could not have invoked it, in case (i) because
caller and callee are being executed by different threads,
and in case (ii) because the over-approximation of the
arguments used by the caller and the over-approximation
of the arguments supplied to the callee are disjoint. We
then instantiate the abstract local state of the next program
point by inheriting the abstract flow-sensitive heap of the
callee ĥres, lifting the abstraction of the caller registers,
joining the caller abstract filter k̂ with the callee abstract
filter k̂res, and storing the abstraction of the returned value
v̂′res in the abstraction of the return register.
Finally, part (3) of the rule is used to handle the propaga-
tion of uncaught exceptions from the callee to the caller.
It uses an abstract uncaught exception fact Uncaught,
generated by the exception rules explained below: it tries
to throw back the exceptions to an appropriate caller,
by matching the context of the Uncaught fact with the
abstract local state of the caller.

d) Exceptions and Threads: The bottom part of Ta-
ble XV presents the abstract semantics of some selected new
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statements of the concrete semantics:
• (|throw ri|)pp : We generate an abstract abnormal local

state fact AState from the abstract local state throwing
the exception, and we set the abstraction of the special
exception register accordingly;

• (|start-thread ri|)pp : We create an abstract pending
thread fact T, tracking that a new thread was started.
The actual instantiation of the abstract thread object is
done by the abstract counterpart of the global reduction
rules, which we discuss later. Observe that, if the abstract
location pointing to the abstract thread object has the
form FS(λ), then λ is lifted, since the parent thread can
access the state of the new thread, but the two threads
are concurrently executed;

• (|join ri|)pp : We just check whether the inte field of
the abstract object over-approximating the running thread
or activity is over-approximating t̂rue , in which case
an abstract abnormal local state throwing an IntExcpt

exception is generated, or f̂alse , in which case the abstract
local state is propagated to the next program point.
e) Example: We show in Table XVI a (simplified) byte-

code program corresponding to the code snippet in Table I.
A few comments about the bytecode: the activity constructor
<init> is explicitly defined; by convention, the first register
after the local registers of a method is used to store a pointer
to the activity object and the register ret is used to store the
result of the last invoked method.

We assume that the class Leaky extends Activity and
implements at least the methods send and getDeviceId,
whose code is not shown here. We also use line numbers
to refer to program points, which makes the notation lighter.
Notice that there are only two allocation points, lines 7 and
9, therefore the abstract flow-sensitive heap will contain only
two entries and have the form 7 7→ l̂1, 9 7→ l̂2.

We selected three bytecode instructions and we give for
each of them the Horn clauses generated by our analysis. We
briefly comment on the clauses: the new instruction at line
7 computes all the abstract flow-sensitive locations reachable
from FS(7) with the predicate Reach: bb′1 (resp. bb′2) is set to
1 iff the location 7 (resp. 9) needs to be lifted. These abstract
flow-sensitive locations are then lifted, if needed, using:

LiftHeap(7 7→ l̂1, 9 7→ l̂2; 7 7→ bb′1, 9 7→ bb′2),

and the abstract flow-sensitive heap is updated by putting a
fresh Storage object in 7 and by lifting 9, if needed:

7 7→ {|Storage;s 7→ ””|}, 9 7→ hlift(l̂2; 7 7→ bb′1, 9 7→ bb′2).

The invoke instruction at line 18 has two clauses: the
first clause retrieves the callee’s class c′ and performs an
abstract virtual method dispatch (here there is only one class
implementing getDeviceId, hence this step is trivial); the
second clause gets the result from the called method and
returns it to the caller, checking that the caller’s abstract thread
pointer λ̂t and supplied argument v̂ match the callee’s context
(λ̂′t, v̂

′) with the constraint λ̂t = λ̂′t ∧ v̂u v̂′ 6v⊥. We removed
the exception handling clauses, as they are not relevant here.

Finally, the move instruction at line 20 is abstracted by four
Horn clauses: the first one evaluates the right-hand side of the

move; the two subsequent clauses execute the move in case
the left-hand side is the field s of, respectively, the abstract
flow-sensitive location 7 or 9; finally, the last clause is used if
the left-hand side is the field s of an abstract flow-insensitive
location, in which case a new abstract flow-insensitive heap
entry is created.

E. Abstracting Global Reduction

The abstract counterpart of the global reduction rules is a
set of Horn clauses over-approximating system events and the
Android activity life-cycle. We extended the original rules of
HornDroid [6] with some new rules needed to support our
richer concrete semantics including threads and exceptions.
Table XVII shows two of these rules to exemplify, the other
rules are in Appendix ??. Rule Tstart over-approximates the
spawning of new threads by generating an abstract local
state executing the run method of the corresponding thread
object. Rule AbState abstracts the mechanism by which a
method recovers from an exception: part (A) turns an abstract
abnormal state into an abstract local state if the abstraction
of the exception register contains the abstract location of an
object of class c extending the Throwable interface and if
there exists an appropriate entry for exception handling in the
exception table; part (B) is triggered if no such entry exists,
and generates an abstract uncaught exception fact, which is
then used in the abstract semantics of the method invocation
performed by the caller.

Let R denote the set of all the Horn clauses defining the
auxiliary facts, like GetBlki, plus the Horn clauses abstracting
system events and the activity life-cycle. We define the trans-
lation of a program P into Horn clauses, noted as (|P |), by
adding to R the translation of the individual statements of P .

F. Formal Results

The soundness of the analysis is proved by using represen-
tation functions [29]: we define a function βCnf mapping each
concrete configuration Ψ to a set of abstract configurations
over-approximating it. We then define a partial order <:
between abstract configurations, where ∆ <: ∆′ should be
interpreted as: ∆ is no coarser than ∆′. The soundness theorem
can be stated as follows; its proof is given in Appendix ??.

Theorem 1 (Global Preservation) If Ψ ⇒∗ Ψ′ under a
given program P , then for any ∆1 ∈ βCnf(Ψ) and ∆2 :> ∆1

there exist ∆′1 ∈ βCnf(Ψ
′) and ∆′2 :> ∆′1 s.t. (|P |)∪∆2 ` ∆′2.

We now discuss how a sound static taint analysis can be
implemented on top of our formal result. First, we extend the
syntax of concrete values as follows:

Taint t ::= public | secret
Values u, v ::= primt | `

The set of taints is a two-valued lattice, and we use vt and tt

to denote respectively the standard ordering on taints (where
public vt secret) and their join. When performing unary and
binary operations, taints are propagated by having the taint of
the result be the join of the taints of the arguments.
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Bytecode Example:

1 .class public Leaky
2 .super Activity
3 .field st:Storage
4 .field st2:Storage

5 .method constructor <init>()
6 .1 local register
7 new r0 Storage
8 move r1.st r0
9 new r0 Storage

10 move r1.st2 r0
11 .end method

12 .method onRestart()
13 .1 local register
14 move r1.st2 r1.st
15 .end method

16 .method onResume()
17 .1 local register
18 invoke r1 getDeviceId()
19 move r0 r1.st2
20 move r0.s ret
21 .end method

22 .method onPause()
23 .2 local registers
24 move r0 r2.st
25 move r1 r0.s
26 move r0 "http://myapp.com/"
27 invoke r2 send() r1 r0
28 .end method

Generated Horn Clauses for Line 7:
• LState7(_; r0 7→ û, r1 7→ v̂; 7 7→ l̂1, 9 7→ l̂2; 7 7→ bb1, 9 7→ bb2) ∧ Reach(FS(7); 7 7→ l̂1, 9 7→ l̂2; 7 7→ bb′1, 9 7→ bb′2) =⇒

LiftHeap(7 7→ l̂1, 9 7→ l̂2; 7 7→ bb′1, 9 7→ bb′2) ∧ LState8(_; r0 7→ FS(7), r1 7→ lift(û; 7 7→ bb′1, 9 7→ bb′2);

7 7→ {|Storage;s 7→ ””|}, 9 7→ hlift(l̂2; 7 7→ bb′1, 9 7→ bb′2); 7 7→ bb1 t̂ bb′1, 9 7→ bb2 t̂ bb′2)

Generated Horn Clauses for Line 18:
• LState18((λ̂t, _); r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2; 7 7→ bb1, 9 7→ bb2)∧

GetBlk1(r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2; _; {|c′; _|}) ∧ c′ ≤ Leaky =⇒
LState0((λ̂t, v̂); r0 7→ v̂; 7 7→ l̂1, 9 7→ l̂2; 7 7→ 0, 9 7→ 0)

• LState18((λ̂t, _); r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2; 7 7→ bb1, 9 7→ bb2)∧
GetBlk1(r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2; _; {|c′; _|}) ∧ c′ ≤ Leaky∧
ResgetDeviceId((λ̂′t, v̂

′); û′res; 7 7→ l̂′1, 9 7→ l̂′2; 7 7→ bb′1, 9 7→ bb′2) ∧ λ̂t = λ̂′t ∧ v̂ u v̂′ 6v ⊥ =⇒
LState19((λ̂t, _); r0 7→ û, r1 7→ v̂,ret 7→ û′res; 7 7→ l̂′1, 9 7→ l̂′2; 7 7→ bb1 t̂ bb′1, 9 7→ bb2 t̂ bb′2)

Generated Horn Clauses for Line 20:
• LState20(_; r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2; 7 7→ bb1, 9 7→ bb2) =⇒ RHS20(ŵ)

• LState20(_; r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2; 7 7→ bb1, 9 7→ bb2)∧
RHS20(û′) ∧ GetBlk0(r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2;FS(7); {|Storage;s 7→ v̂′|}) =⇒

LState21(_; r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ {|Storage;s 7→ û′|}, 9 7→ l̂2; 7 7→ bb1, 9 7→ bb2)

• LState20(_; r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2; 7 7→ bb1, 9 7→ bb2)∧
RHS20(û′) ∧ GetBlk0(r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2;FS(9); {|Storage;s 7→ v̂′|}) =⇒

LState21(_; r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ {|Storage;s 7→ û′|}; 7 7→ bb1, 9 7→ bb2)

• LState20(_; r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2; 7 7→ bb1, 9 7→ bb2) ∧ RHS20(û′)∧
GetBlk0(r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2;NFS(pp); {|Storage;s 7→ v̂′|}) ∧ Reach(û′; 7 7→ l̂1, 9 7→ l̂2; 7 7→ bb′1, 9 7→ bb′2) =⇒

LiftHeap(7 7→ l̂1, 9 7→ l̂2; 7 7→ bb′1, 9 7→ bb′2) ∧ H(pp, {|Storage;s 7→ û′|})∧
LState21(_; r0 7→ lift(û; 7 7→ bb′1, 9 7→ bb′2), r1 7→ lift(v̂; 7 7→ bb′1, 9 7→ bb′2),ret 7→ lift(ŵ; 7 7→ bb′1, 9 7→ bb′2);

7 7→ hlift(l̂1; 7 7→ bb′1, 9 7→ bb′2), 9 7→ hlift(l̂2; 7 7→ bb′1, 9 7→ bb′2); 7 7→ bb1 t̂ bb′1, 9 7→ bb2 t̂ bb′2)

TABLE XVI
EXAMPLE OF DALVIK BYTECODE AND EXCERPT OF THE CORRESPONDING HORN CLAUSES

Tstart = {T(λ, {|c; (f 7→ _)∗|}) ∧ c ≤ c′ ∧ c ≤ Thread =⇒
LStatec′,run,0((NFS(λ),NFS(λ)); (0̂k)k≤loc ,NFS(λ); (⊥)∗; 0∗) | c′ ∈ l̂ookup(run) ∧ sign(c′, run) = Thread loc−−→ Void}

AbState = {AStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlkexcpt(v̂
∗; ĥ; _; {|c′; _|}) ∧ c′ ≤ Throwable =⇒

LStatec,m,pc′ (_; v̂∗; ĥ; k̂) | ExcptTable(c,m, pc, c′) = pc′} ∪ (A)

{AStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlkexcpt(v̂
∗; ĥ; _; {|c′; _|}) ∧ c′ ≤ Throwable =⇒

Uncaughtc,m(_; v̂excpt; ĥ; k̂) | ExcptTable(c,m, pc, c′) = ⊥} (B)

TABLE XVII
GLOBAL RULES OF THE ABSTRACT SEMANTICS - EXCERPT

We then define the taint extraction function taintΨ which
satisfies the following relations:

taintΨ(v) =
tt
i taintΨ(vi) if v = ` ∧H(`) = {|c; (fi 7→ vi)

∗|}
tt
i taintΨ(vi) if v = ` ∧H(`) = τ [v∗]

tt
i taintΨ(vi) if v = ` ∧H(`) = {|@c; (ki 7→ vi)

∗|}
t if v = primt

Informally, given a value v, it extracts its taint by doing
a recursive computation: if v is a primitive value this is

straightforward; if v is a pointer it recursively computes the
join of all the taint accessible from v in the heap of Ψ.

We describe in Table ?? the abstract counter-part of taintΨ:
intuitively Taint(v̂, ĥ, t̂) holds when v̂ has taint t̂ in the
abstract local heap ĥ. The rules defining Taint are similar to
the rules defining Reach, since both predicate need to perform
a fix-point computation in the abstract heap.

Finally, we assume two sets Sinks and Sources, where Sinks
(resp. Sources) contains a pair (c, m) if and only if a method
m of a class c is a sink (resp. a source). We assume that when
a source returns a value, it always has the secret taint.
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Taint(p̂rimt , ĥ, t) Taint(û, ĥ, t̂) ∧ ûv v̂ =⇒ Taint(v̂, ĥ, t̂) Taint(v̂, ĥ, t̂) ∧ Taint(v̂, ĥ, t̂ ′) =⇒ Taint(v̂, ĥ, t̂ tt t̂ ′)

GetBlk0(û; ĥ; _; b̂) ∧


b̂ = {|c; _, f 7→ v̂|}

b̂ = τ [v̂]

b̂ = {|@c; v̂|}

 ∧ Taint(v̂, ĥ, t̂) =⇒ Taint(û, ĥ, t̂)

TABLE XVIII
HORN CLAUSES RULES USED TO DERIVE Taint(v̂, ĥ, t̂).

Definition 2 A program P leaks starting from a configuration
Ψ if there exists (c,m) ∈ Sinks such that Ψ⇒∗ Ω·Ξ·H ·S and
there exists 〈`, s, π, γ, α〉 ∈ Ω or ⟪`, `′, π, γ, α⟫ ∈ Ξ such that
α = 〈c,m, 0 · u∗ · st∗ · R〉 :: α′, R(rk) = v and taintΨ(v) =
secret for some rk and v.

We then state the soundness of our taint tracking analysis
in the following lemma: its proof can be found in Section ??.

Lemma 1 If for all sinks (c,m) ∈ Sinks, ∆ ∈ βCnf(Ψ):

(|P |) ∪∆ ` LStatec,m,0(_; v̂∗; ĥ; k̂) ∧ Taint(v̂i, ĥ, secret)

is unsatisfiable for each i, then P does not leak from Ψ.

V. EXPERIMENTS

We implemented a prototype of our flow-sensitive analysis
as an extension of an existing taint tracker, HornDroid [6].
Our tool encodes the application to analyse as a set of Horn
clauses, as we detailed in the previous section, and then
uses the SMT solver Z3 [28] to statically detect information
leaks. More specifically, the tool automatically generates a
set of queries for the analysed application based on a public
database of Android sources and sinks [33]; if no query is
satisfiable according to Z3, no information leak may occur by
the soundness results of our analysis.

A. Testing on DroidBench

We tested our flow-sensitive extension of HornDroid (called
fsHornDroid) against DroidBench [3], a common benchmark
of 115 small applications proposed by the research commu-
nity to test information flow analysers for Android3. In our
experiments we compared with the most popular and advanced
static taint trackers for Android applications: FlowDroid [3],
AmanDroid [40], DroidSafe [14] and the original version
of HornDroid [6]. For all the tools, we computed standard
validity measures (sensitivity for soundness and specificity
for precision) and we tracked the analysis times on the 115
applications included in DroidBench: the experimental results
are summarised in Table XVIII.

Like the original version of HornDroid, fsHornDroid detects
all the information leaks in DroidBench, since its sensitivity
is 1. However, fsHornDroid turns out to be the most precise
static analysis tool to date, with a value of specificity which is
strictly higher than the one of all its competitors. In particular,
fsHornDroid produces only 4 false positives on DroidBench: a
leak inside an exception that is never thrown; a leak inside an

3We removed from DroidBench 4 applications testing implicit information
flows, since none of the available tools aims at supporting them.

unregistered callback which cannot be triggered; a leak inside
an undeclared activity which cannot be started; and a leak of
a public element of a list which contains also a confidential
element. The last two cases should be easy to fix: the former by
parsing the application manifest and the latter by implementing
field-sensitivity for lists.

We also evaluated the analysis times of the applications in
DroidBench for the different tools. In terms of performances,
the original version of HornDroid is better than fsHornDroid
as expected. However, the performances of fsHornDroid are
satisfying: the median analysis time does not change too much
with respect to HornDroid, which is the fastest tool, while the
average analysis time is comparable with other flow-sensitive
analysers like FlowDroid and AmanDroid.

B. Testing on Real Applications

In order to test the scalability of fsHornDroid, we picked the
top 4 applications from 16 categories in a publicly available
snapshot of the Google Play market [39]. For each application,
we run fsHornDroid setting a timeout of 3 hours for finding
the first information leak. In the end, we managed to get the
analysis results within the timeout for 62 applications, whose
average and median sizes were 7.4 Mb and 5 Mb respectively.
The tool reported 47 applications as leaky and found no
direct information leaks for 15 applications. Unfortunately, the
absence of a ground truth makes it hard to evaluate the validity
of the reported leaks, which we plan to manually investigate
in the future. To preliminarily assess the improvement in
precision due to flow-sensitivity, however, we sampled 3 of
the potentially leaky applications and we checked all their
possible information leaks. On these applications, fsHornDroid
eliminated 17 false positives with respect to HornDroid, which
amount to the 18% of all the checked flows.

In terms of performances, fsHornDroid spent 17 minutes
on average to perform the analysis, with a median analysis
time of 2 minutes on an Intel Xeon E5-4650L 2.60 GHz. The
constantly updated experimental evaluation is available online,
along with the web version of the tool and its sources [1].
Our results demonstrate that fsHornDroid scales to real ap-
plications, despite the increased performance overhead with
respect to the original HornDroid.

C. Limitations

Our implementation of fsHornDroid does not aim at solving
a few important limitations of HornDroid. First, a comprehen-
sive implementation of analysis stubs for unknown methods is
missing: this issue was thoroughly discussed by the authors of
DroidSafe [14] and we think their research may be very helpful
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Validity Measures on DroidBench:

FlowDroid AmanDroid DroidSafe HornDroid fsHornDroid
Sensitivity 0.67 0.74 0.92 1 1
Specificity 0.58 0.74 0.47 0.68 0.79
F-Measure 0.62 0.74 0.62 0.81 0.88

Sensitivity = tp/(tp+ fn) ∼ Soundness
Specificity = tn/(tn+ fp) ∼ Precision
F-Measure = 2 ∗ (sens ∗ spec)/(sens+ spec) ∼ Aggregate

Analysis Times on DroidBench:

FlowDroid AmanDroid DroidSafe HornDroid fsHornDroid
Average 22s 11s 2m92s 1s 14s

1st Quartile 13s 9s 2m38s 1s 1s
2nd Quartile 14s 10s 3m1s 1s 2s
3rd Quartile 15s 11s 3m26s 1s 5s

TABLE XIX
VALIDITY MEASURES AND ANALYSIS TIMES ON DROIDBENCH

to improve on this. Moreover, the analysis does not capture
implicit information flows, but only direct information leaks,
and it does not cover native code, but only Dalvik bytecode.
Finally, the analysis has no way of being less conservative
on intended information flows: implementing declassification
mechanisms would be important to analyse real applications
without raising a high number of false alarms.

VI. RELATED WORK

There are several static information flow analysers for
Android applications (see, e.g., [41], [42], [27], [13], [22],
[3], [40], [14], [6]). We thoroughly compared with the current
state of the art in the rest of the paper, so we focus here on
other related works.

a) Sound Analysis of Android Applications: The first
paper proposing a formally sound static analysis of Android
applications is a seminal work by Chaudhuri [7]. The paper
presented a type-based analysis to reason on the data-flow
security properties of Android applications modeled in an
idealised calculus. A variant of the analysis was implemented
in a prototype tool, SCanDroid [12]. Unfortunately, SCanDroid
is in an early prototype phase and it cannot analyse the
applications in DroidBench [3].

Sound type systems for Android applications have also been
proposed in [25] to prove non-interference and in [5] to prevent
privilege escalation attacks. In both cases, the considered
formal models are significantly less detailed than ours and
the purpose of the static analyses is different. Though the
framework in [25] can be used to prevent implicit information
flows, unlike our approach, the analysis proposed there is not
fully automatic, it does not approximate runtime value, thus
sacrificing precision, and it was not experimentally evaluated.

Julia is a static analysis tool based on abstract interpretation,
first developed for Java and recently extended to Android [30].
It is a commercial product and supports many useful features,
including class analysis, nullness analysis and termination
analysis for Android applications, but it does not track infor-
mation flows. Moreover, Julia does not handle multi-threading
and we are not aware of the existence of a soundness proof
for its extension to Android.

b) Pointer Analysis: Pointer analysis aims at over-
approximating the set of objects that a program variable can
refer to, and it is a well-established and rich research field [20],
[37], [36]. The most prominent techniques in pointer analysis
are variants of the classical Andersen algorithm [2], includ-
ing flow-insensitive analyses [9], [32], [16], [21] and flow-
sensitive analyses [8], [10], [19], [23]; light-weight analyses
in the flavor of the unification-based Steensgaard analysis [38],
which are flow-insensitive and very efficient; and shape anal-
ysis techniques [35], which can be used to prove complex
properties about the heap, often at the price of efficiency.

Although pointer analysis of sequential programs is well-
studied, much less attention has been paid to pointer analysis
of concurrent programs. Most flow-insensitive analyses for se-
quential programs remain sound for concurrent programs [34],
because flow-insensitivity forces a sound analysis to consider
all the possible interleavings of reads and writes to the heap.
Designing a sound flow-sensitive pointer analysis for concur-
rent programs is more complicated and most flow-sensitive
analyses for sequential programs cannot be easily adapted
to concurrent programs. Still, flow-sensitive sound analyses
for concurrent programs exist. The approach of Rugina and
Rinard [34] handles concurrent programs with an unbounded
number of threads, recursion and dynamic allocations, but it
does not allow strong updates on dynamically allocated heap
objects. Gotsman et al. [15] proposed a framework to prove
complex properties about programs with dynamic allocations
by using shape analysis and separation logic, but their ap-
proach requires users or external tools to provide annotations,
and it is restricted to a bounded number of threads.

VII. CONCLUSION

We presented the first static analysis for Android applica-
tions which is both flow-sensitive on the heap abstraction and
provably sound with respect to a rich formal model of the
Android ecosystem. Designing a sound yet precise analysis in
this setting is particularly challenging, due to the complexity
of the control flow of Android applications. In this work, we
adapted ideas from recency abstraction [4] to hit a sweet spot
in the analysis design space: our proposal is sound, precise,
and efficient in practice. We substantiated these claims by
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implementing the analysis in HornDroid [6], a state-of-the-art
static information flow analyser for Android applications, and
by performing an experimental evaluation of our extension.
Our work takes HornDroid one step further towards the sound
information flow analysis of real Android applications.
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a) Appendix outline:: In Section ?? we give the small-step semantics of the local states reduction for the Dalvik
bytecode, as well as the reduction rules for activities and threads; in Section ?? we give the full abstract semantics; in
Section ?? we give the soundness proof.

APPENDIX A
CONCRETE SEMANTICS

As in [6], we require that Dalvik programs are well-formed.

Definition 3 (Well-formed Program [6]) A program P is well-formed iff all its class names are pairwise distinct and,
for each of its classes, all the field names and the method names are pairwise distinct.

From now on, we always consider a fixed well-formed program P = cls∗. We give in Table ?? the syntax and an
informal explanation of the Dalvik statements that were omitted in the body. The extensions with respect to [6] are in bold.

A. Extensions : Waiting Sets and Monitors

In order to give a full account of Java concurrency we extended our model to include waiting sets and monitors [17], as
well as two other interrupting methods of the Java Thread API. We start by extending the concrete semantics to handle
the wait statement: we introduce a new semantic domain for waiting states and extend the local state lists domain: we
use a special type of state, called waiting state and denoted by ω = waiting(j, `), to model that the thread running the
method is currently waiting on some object stored at location `; the integer parameter j stores how many times the object
monitor was acquired prior to entering the waiting state. A local state list L# is now a list of local states and waiting
states. Since a thread entering a waiting state is paused until it is ready to resume its execution, we assume that a local
state list never contains more than one waiting state. Moreover, we assume this waiting state is always the head of the
local state list (if present).

Waiting states ω ::= waiting(`, j)
Local state lists L# ::= ε | L :: L# | ω :: L#

a) Statements Description: A monitor is a synchronization construct attached to an object, which can be acquired
and released by threads, but cannot be acquired by more than one thread at once. Any thread holding an object monitor
can start waiting on the object: this makes the thread enter the object waiting set, release the monitor, and pause until it is
woken-up, notified or interrupted by another thread. Since we do not model timing aspects in our formalism and spurious
wake-ups may happen in practice, we make the conservative assumption that waiting threads can non-deterministically
wake up at any time. Moreover, we assume that all objects contain two special fields: the acquired field storing the location
of the thread currently holding the object monitor, and the m-cnt field counting the number of monitor acquisitions. These
fields can only be accessed by the monitor and wait rules.

When monitor-enter ro is called, there are two possibilities. If the m-cnt field of the monitor of the object whose
location is stored in ro is set to 0, it is immediately set to 1 and the corresponding acquired field is set to the location of
the acquiring thread. Otherwise, we check that the acquired field points to the location of the acquiring thread: if this is
the case, the m-cnt field is incremented by 1 to reflect the presence of multiple acquisitions. A monitor is released only
when all its acquisitions have been released via the statement monitor-exit ro, which checks that the running thread
holds the monitor of the object whose location is stored in ro and decrements the monitor counter m-cnt by 1.

The statement wait ro checks that the running thread holds the monitor of the object o whose location is stored in ro,
releases the monitor and pushes on the call stack a waiting state waiting(`, j), where ` is the location of o and j tracks
how many times the released monitor was acquired before calling wait ro. An uninterrupted thread can exit a waiting
state and reacquire back the released monitor j times, provided that the monitor is not held by another thread. If a thread

sinvoke c m r∗ invoke the static method m of the class c with args r∗
checkcast rs τ jump to the next statement if the value of rs has type τ
instof rd rs τ put true in rd iff the value of rs has type τ
interrupted rt read and reset the interrupt field of the thread in rt
is-interrupted rt read the interrupt field of the thread in rt
monitor-enter ro acquire the monitor of the object in ro
monitor-exit ro release the monitor of the object in ro
wait ro enter the waiting set of the object in ro

TABLE XX
SYNTAX AND INFORMAL SEMANTICS OF ADDITIONAL STATEMENTS
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in a waiting state gets interrupted, an IntExcpt exception is thrown, the thread wakes up and starts recovering from the
exception.

Finally interrupted rt and is-interrupted rt are simple write or read operations on the interrupt field (inte)
of the thread object whose location is stored in rt.

B. Local Reduction Relation

1) Type System: Local registers are untyped in Dalvik, and have default value 0. We also assume that for all type τ ,
there exists a default value 0τ that will be used for field initialization. Before giving the concrete semantics of the Dalvik
bytecode, we need some definitions. First we define a function typeH(v) that retrieve from the heap H the type of the
memory block v is pointing to.

Definition 4 Given a heap H , we let the partial function typeH(v) be defined as follows:

typeH(v) =


c if v = ` ∧H(`) = {|c; (f 7→ v)∗|}
array[τ ] if v = ` ∧H(`) = τ [v∗]

Intent if v = ` ∧H(`) = {|@c; (k 7→ v)∗|}
τprim if v = prim

where τprim is the type of the primitive value prim .

Given a class name c, we let super(c) = c′ if there exists a class clsi such that clsi = cls c ≤ c′ imp c∗ {fld∗; mtd∗},
and inter(c) = {c∗} iff there exists a class clsi such that clsi = cls c ≤ c′ imp c∗ {fld∗; mtd∗}. The subtyping relation
is quite simple: a class c is a subclass of its super class super(c) and of the interfaces inter(c) it implements (plus reflexive
and transitive closure). There is also a co-variant subtyping rule for array, which is unsound in presence of side-effects
(types are checked dynamically at run-time to avoid errors). The typing rules are summarized below.

(SUB-REFL)

τ ≤ τ

(SUB-TRANS)
τ ≤ τ ′ τ ′ ≤ τ ′′

τ ≤ τ ′′
(SUB-EXT)

c ≤ super(c)

(SUB-IMPL)
c′ ∈ inter(c)
c ≤ c′

(SUB-ARRAY)
τ ≤ τ ′

array[τ ] ≤ array[τ ′]

2) Right-Hand Side Evaluation: Let a[i] = vi whenever a = τ [v∗] and o.f = v whenever o = {|c; (fi 7→ vi)
∗, f 7→ v|}.

We define in Table ?? the relation ΣJrhsK that evaluates a right-hand side expression in a given local configuration Σ.

(RHS-REGISTER)

ΣJrK = R(r)

(RHS-ARRAY)
` = ΣJraK
a = H(`)
j = ΣJridx K

ΣJra[ridx ]K = a[j]

(RHS-OBJECT)
` = ΣJroK
o = H(`)

ΣJro.fK = o.f

(RHS-STATIC)

ΣJc.fK = S(c.f)

(RHS-PRIM)

ΣJprimK = prim

Convention: in all the rules, let Σ = `r · αc · π · γ ·H · S with αc = 〈pp · _ · st∗ ·R〉 :: α′ or αc = AbNormal(〈pp · _ · st∗ ·R〉 :: α′).
TABLE XXI

EVALUATION OF RIGHT-HAND SIDES (ΣJrhsK = v)

3) Instruction Fetching: We recall that the definition of the local reduction relation uses an auxiliary relation Σ, st ⇓ Σ′,
which means that the execution of the statement st in Σ produces Σ′. The simplest rule defining a local reduction Σ Σ′

just fetches the next statement st to run and performs a look-up on the auxiliary relation Σ, st ⇓ Σ′. Formally:
(R-NEXTSTM)
Σ, get-stm(Σ) ⇓ Σ′

Σ Σ′

We are finally ready to give the semantics of the Dalvik bytecode relation: the standard operation are in Table ??, while
the new operations are given in Table ??
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(R-GOTO)

Σ,goto pc′ ⇓ Σ[pc 7→ pc′]

(R-TRUE)
ΣJr1K 4 ΣJr2K

Σ,if4 r1 r2 then pc′ ⇓ Σ[pc 7→ pc′]

(R-FALSE)
¬(ΣJr1K 4 ΣJr2K)

Σ,if4 r1 r2 then pc′ ⇓ Σ+

(R-MOVEREG)
v = ΣJrhsK R′ = R[r 7→ v]

Σ,move r rhs ⇓ Σ+[R 7→ R′]

(R-MOVEFLD)
v = ΣJrhsK ` = ΣJroK o = H(`) H′ = H[` 7→ o[f 7→ v]]

Σ,move ro.f rhs ⇓ Σ+[H 7→ H′]

(R-MOVEARR)
v = ΣJrhsK ` = ΣJraK typeH(`) = array[τ ] typeH(v) ≤ τ

a = H(`) j = ΣJridx K H′ = H[` 7→ a[j 7→ v]]

Σ,move ra[ridx ] rhs ⇓ Σ+[H 7→ H′]

(R-MOVESFLD)
v = ΣJrhsK S′ = S[c′.f 7→ v]

Σ,move c′.f rhs ⇓ Σ+[S 7→ S′]

(R-UNOP)
v = �ΣJrsK R′ = [rd 7→ v]

Σ,unop� rd rs ⇓ Σ+[R 7→ R′]

(R-BINOP)
v = ΣJr1K⊕ ΣJr2K R′ = R[rd 7→ v]

Σ,binop⊕ rd r1 r2 ⇓ Σ+[R 7→ R′]

(R-NEWOBJ)
o = {|c′; (fτ 7→ 0τ )∗|} ` = pc,m,pc /∈ dom(H)

H′ = H[` 7→ o] R′ = R[rd 7→ `]

Σ,new rd c
′ ⇓ Σ+[H 7→ H′, R 7→ R′]

(R-NEWARR)
len = ΣJrlK a = τ [(0τ )j≤len ]

` = pc,m,pc /∈ dom(H) H′ = H[` 7→ a] R′ = R[rd 7→ `]

Σ,newarray rd rl τ ⇓ Σ+[H 7→ H′, R 7→ R′]

(R-CAST)
` = ΣJrsK typeH(`) ≤ τ
Σ,checkcast rs τ ⇓ Σ+

(R-INSTOFTRUE)
` = ΣJrsK typeH(`) ≤ τ R′ = R[rd 7→ true]

Σ,instof rd rs τ ⇓ Σ+[R 7→ R′]

(R-INSTOFFALSE)
` = ΣJrsK typeH(`) 6≤ τ R′ = R[rd 7→ false]

Σ,instof rd rs τ ⇓ Σ+[R 7→ R′]

(R-RETURN)
α = 〈c,m, pc · _ · _ ·R〉 :: 〈c′,m′, pc′ · v∗ · st∗ ·R′〉 :: α0

α′′ = 〈c′,m′, pc′ + 1 · v∗ · st∗ ·R′[rres 7→ ΣJrresK]〉 :: α0

Σ,return ⇓ Σ[α 7→ α′′]

(R-SCALL)
lookup(c′,m′) = (c′, st∗) sign(c′,m′) = τ1, . . . , τn

loc−−→ τ

R′ = ((rj 7→ 0)j≤loc , (rloc+k 7→ ΣJr′kK)k≤n)

α′′ = 〈c′,m′, 0 · (ΣJr′kK)k≤n · st∗ ·R′〉 :: α

Σ,sinvoke c′ m′ r′1, . . . , r
′
n ⇓ Σ[α 7→ α′′]

(R-CALL)
` = ΣJroK lookup(typeH(`),m′) = (c′, st∗) sign(c′,m′) = τ1, . . . , τn

loc−−→ τ

R′ = ((rj 7→ 0)j≤loc , rloc+1 7→ `, (rloc+1+k 7→ ΣJr′kK)k≤n) α′′ = 〈c′,m′, 0 · (ΣJr′kK)k≤n · st∗ ·R′〉 :: α

Σ,invoke ro m
′ r′1, . . . , r

′
n ⇓ Σ[α 7→ α′′]

(R-NEWINTENT)
i = {|@c′; ·|} ` = pc,m,pc /∈ dom(H)
H′ = H[` 7→ i] R′ = R[rd 7→ `]

Σ,newintent rd c
′ ⇓ Σ+[H 7→ H′, R 7→ R′]

(R-PUTEXTRA)
` = ΣJriK

i = H(`) k = ΣJrkK v = ΣJrvK H′ = H[` 7→ i[k 7→ v]]

Σ,put-extra ri rk rv ⇓ Σ+[H 7→ H′]

(R-GETEXTRA)
` = ΣJriK k = ΣJrkK

H(`) = i typeH(i.k) ≤ τ v = i.k R′ = R[rres 7→ v]

Σ,get-extra ri rk τ ⇓ Σ+[R 7→ R′]

(R-STARTACT)
` = ΣJriK H(`) = i π′ = i :: π

Σ,start-act ri ⇓ Σ+[π 7→ π′]

Convention: let pp = c,m, pc and let Σ = _ ·α ·π · γ ·H ·S with α = 〈c,m, pc · _ · _ ·R〉 :: α′. We recall that Σ+ stands for Σ where pc is replaced
by pc + 1.

TABLE XXII
SMALL STEP SEMANTICS OF µ-DALVIKA - STANDARD STATEMENTS
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Exception Rules

(R-THROW)
` = ΣJriK H(`) = {|c′; (f 7→ v)∗|}

Σ,throw ri ⇓ Σ[α 7→ AbNormal(α)][rexcpt 7→ `]

(R-MOVEEXCEPTION)
` = ΣJrexcptK

Σ,move-except rd ⇓ Σ+[rd 7→ `]

(R-CAUGHT)
` = ΣAJrexcptK H(`) = {|c′; (f 7→ v)∗|}

ExcptTable(c,m, pc, c′) = pc′ αc = 〈c,m, pc′ · _ · _ ·R〉 :: α′

ΣA  ΣA[αA 7→ αc]

(R-UNCAUGHT)
` = ΣAJrexcptK

H(`) = {|c′; (f 7→ v)∗|} ExcptTable(c,m, pc, c′) = ⊥
ΣA  ΣA[αA 7→ AbNormal(α′)][rexcpt 7→ `]

Thread Rules

(R-STARTTHREAD)
` = ΣJriK H(`) = {|c′; (f 7→ v)∗|} γ′ = ` :: γ

Σ,start-thread ri ⇓ Σ+[γ 7→ γ′]

(R-INTERRUPTTHREAD)
` = ΣJriK H(`) = {|c′; (f 7→ v)∗, inte 7→ _|}
H′ = H[` 7→ {|c′; (f 7→ v)∗, inte 7→ true|}]

Σ,interrupt ri ⇓ Σ+[H 7→ H′]

(R-INTERRUPTEDTHREAD)
` = ΣJriK H(`) = {|c′; (f 7→ v)∗, inte 7→ u|}
H′ = H[` 7→ {|c′; (f 7→ v)∗, inte 7→ false|}]

Σ,interrupted ri ⇓ Σ+[rres 7→ u,H 7→ H′]

(R-ISINTERRUPTEDTHREAD)
` = ΣJriK H(`) = {|c′; (f 7→ v)∗, inte 7→ u|}

Σ,is-interrupted ri ⇓ Σ+[rres 7→ u]

(R-JOINTHREAD)
H(`r) = {|cr; (fr 7→ vr)

∗, inte 7→ false|}
` = ΣJriK H(`) = {|c′; (f 7→ v)∗, finished 7→ true|}

Σ,join ri ⇓ Σ+

(R-INTERRUPTJOIN)
H(`r) = {|cr; (fr 7→ vr)

∗, inte 7→ true|}
o = {|cr; (fr 7→ vr)

∗, inte 7→ false|} pc,m,pc 6∈ dom(H)
H′ = H, pc,m,pc 7→ {|IntExcpt; |} αc = AbNormal(α[rexcpt 7→ pc,m,pc ])

Σ,join ri ⇓ Σ[α 7→ αc, H 7→ H′[`r 7→ o]]

Monitor and Wait Rules
(R-MONITORENTER1)
` = ΣJriK H(`) = {|c′; (f 7→ v)∗, acquired 7→ _,m-cnt 7→ 0|}

o′ = {|c′; (f 7→ v)∗, acquired 7→ `r,m-cnt 7→ 1|}
Σ,monitor-enter ri ⇓ Σ+[H 7→ H[` 7→ o′]]

(R-MONITORENTER2)
` = ΣJriK H(`) = {|c′; (f 7→ v)∗, acquired 7→ `r,m-cnt 7→ j|}
o′ = {|c′; (f 7→ v)∗, acquired 7→ `r,m-cnt 7→ j + 1|} j > 0

Σ,monitor-enter ri ⇓ Σ+[H 7→ H[` 7→ o′]]

(R-MONITOREXIT)
` = ΣJriK

H(`) = {|c′; (f 7→ v)∗, acquired 7→ `r,m-cnt 7→ j + 1|}
o′ = {|c′; (f 7→ v)∗, acquired 7→ `r,m-cnt 7→ j|} j ≥ 0

Σ,monitor-exit ri ⇓ Σ+[H 7→ H[` 7→ o′]]

(R-STARTWAIT)
` = ΣJriK H(`) = {|c′; (f 7→ v)∗, acquired 7→ `r,m-cnt 7→ j|}

o′ = {|c′; (f 7→ v)∗, acquired 7→ `r,m-cnt 7→ 0|} j > 0

Σ,wait ri ⇓ Σ[α 7→ waiting(`, j) :: α,H 7→ H[` 7→ o′]]

(R-STOPWAIT)
H(`r) = {|cr; (fr 7→ vr)

∗, inte 7→ false|}
α = waiting(`o, j) :: α0

H(`o) = {|c′; (f 7→ v)∗, acquired 7→ _,m-cnt 7→ 0|}
o′ = {|c′; (f 7→ v)∗, acquired 7→ `r,m-cnt 7→ j|}

Σ Σ+[α 7→ α0, H 7→ H[`o 7→ o′]]

(R-INTERRUPTWAIT)
H(`r) = {|cr; (fr 7→ vr)

∗, inte 7→ true|}
α = waiting(_, _) :: α0 pc,m,pc 6∈ dom(H)

o = {|cr; (fr 7→ vr)
∗, inte 7→ false|} oe = {|IntExcpt; |}

Σ Σ[α 7→ AbNormal(α0[rexcpt 7→ `e]), H 7→ H[pc,m,pc 7→ oe, `r 7→ o]]

Convention: let Σ = `r · α · π · γ ·H · S with α = 〈c,m, pc · _ · _ ·R〉 :: α′ (apart when specified otherwise), and ΣA = `r · αA · π · γ ·H · S with
αA = AbNormal(α). We recall that Σ+ stands for Σ where pc is replaced by pc + 1.

TABLE XXIII
SMALL STEP SEMANTICS OF µ-DALVIKA - NEW STATEMENTS
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C. Global Rules Descriptions

1) Serialization: All the activities running on some Android device are sand-boxed, in order to provide some security
guarantees. Inter-component communications are still allowed through the intent mechanism: activities can exchanged
objects using intents, which are a special kind of object storing data in a dictionary-like structure. When an activity sends
an intent to some activity, a copy of this intent is given to the receiver activity. This copying is performed by a recursive
serialization procedure, and there is therefore no object-sharing between different activities.

We model serialization using a set of derivation rules for fact of the form Γ ` serHVal(v) = (v′, H ′,Γ′) and Γ ` serHBlk(b) =
(b′, H ′,Γ′), where Γ and Γ′ are serialization context consisting a of list of key-value bindings of locations of the form
(pλ 7→ p′λ) (notice that both location have the same annotation). Serialization contexts store, for each already serialized
location `, the fresh location `′ that was used to replace `. This way if the same location is encountered twice (or more)
during the serialization process, it will be serialized by the same location each time. Intuitively, if serHVal(v) = (v′, H ′,Γ′)
(resp. Γ ` serHBlk(b) = (b′, H ′,Γ′)) is derivable then v′ (resp. b′) is the serialized version of the value v (resp. block b), H ′

is the heap containing all the serialized version of the objects encountered, and Γ′ is the history of all serialized locations.
We refer to Table ?? for the formal statement of the serialization rules.

Γ ` serHVal(prim) = (prim, ·,Γ)

(pλ 7→ p′λ) ∈ Γ

Γ ` serHVal(pλ) = (p′λ, ·,Γ)

pλ /∈ dom(Γ) p′λ fresh location Γ, pλ 7→ p′λ ` serHBlk(H(pλ)) = (b,H′′,Γ′) H′ = H′′, p′λ 7→ b

Γ ` serHVal(pλ) = (p′λ, H
′,Γ′)

Γ0 = Γ ∀i ∈ [1, n] : Γi−1 ` serHVal(vi) = (ui, Hi,Γi) H′ = H1, . . . , Hn

Γ ` serHBlk({|c
′; (fi 7→ vi)

i≤n|}) = ({|c′; (fi 7→ ui)
i≤n|}, H′,Γn)

Γ0 = Γ ∀i ∈ [1, n] : Γi−1 ` serHVal(vi) = (ui, Hi,Γi) H′ = H1, . . . , Hn

Γ ` serHBlk(τ [(vi)
i≤n]) = (τ [(ui)

i≤n], H′,Γn)

Γ0 = Γ ∀i ∈ [1, n] : Γi−1 ` serHVal(vi) = (ui, Hi,Γi) H′ = H1, . . . , Hn

Γ ` serHBlk({|@c
′; (ki 7→ vi)

i≤n|}) = ({|@c′; (ki 7→ ui)
i≤n|}, H′,Γn)

Conventions: environments (denoted by Γ,Γ′ . . . ) are partial mappings from the set of all locations to itself.
TABLE XXIV

SERIALIZATION RULES

2) Threads and Activities: Before giving the global reduction relation, we need some definitions. We start by formally
define what is a thread class and an activity class.

Definition 5 A class cls is a thread class if and only if cls = cls c ≤ c′ imp c∗ {fld∗; mtd∗} for some c′ ≤ Thread. A
thread is an instance of a thread class. We stipulate that each thread implements the method run, has a boolean field inte
stating whether the thread was interrupted and a boolean field finished stating whether the thread has finished or not.

Definition 6 A class cls is an activity class if and only if cls = cls c ≤ c′ imp c∗ {fld∗; mtd∗} for some c′ ≤ Activity.
An activity is an instance of an activity class. We stipulate that each activity has the following fields: (1) finished: a
boolean flag stating whether the activity has finished or not; (2) intent: a location to the intent which started the activity;
(3) result: a location to an intent storing the result of the activity computation; and (4) parent: a location to the parent
activity, i.e., the activity which started the present one.

Each activity provides a set of event handlers which are callbacks methods used to respond to user inputs: for all activity
class c, let handlers(c) = {m1, . . . ,mn} be the set of callback method names of c. We model the activity life-cycle (see
[31]) by a set of activity states ActStates and a transition relation Lifecycle ⊆ ActStates×ActStates. For each activity state
s, we let cb(c, s) be the set of callbacks for the activity c in the state s. Moreover we assume that for the running state,
cb(c, running) = handlers(c).

We also need the notion of callback stack: a callback stack is the initial call stack of an new activity frame, created
upon a callback method invocation:

Definition 7 Given a location ` pointing to an activity of class c, we let α`.s stand for an arbitrary callback stack for
state s, i.e., any call stack 〈c′,m, 0 · · · st∗ · R〉 :: ε, where (c′, st∗) = lookup(c,m) for some m ∈ cb(c, s), sign(c′,m) =
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τ1, . . . , τn
loc−−→ τ and:

R = ((ri 7→ 0)i≤loc , rloc+1 7→ `, (rloc+1+j 7→ vj)
j≤n),

for some values v1, . . . , vn of the correct type τ1, . . . , τn.

3) Global Reduction Relation: We are now ready to give the global reduction relation. First we will describe two new
rules which were not given in the body and can be found in Table ??: rule (T-INTENT) allows a thread to transfer an intent
to the activity that spawned it, and rule (T-THREAD) allows a thread to transfer a location in its pending thread stack to
the activity that spawned it.

(T-REDUCE)
`t · α · π · γ ·H · S  `t · α′ · π′ · γ′ ·H′ · S′

Ω · Ξ :: ⟪`, `t, π, γ, α⟫ :: Ξ′ ·H · S ⇒ Ω · Ξ :: ⟪`, `t, π′, γ′, α′⟫ :: Ξ′ ·H′ · S′

(T-KILL)
H(`′) = {|c; (f 7→ v)∗, finished 7→ _|} H′ = H[`′ 7→ {|c; (f 7→ v)∗, finished 7→ true|}]

Ω · Ξ :: ⟪`, `′, ε, ε, α⟫ :: Ξ′ ·H · S ⇒ Ω · Ξ :: Ξ′ ·H′ · S

(T-INTENT)
(ϕ,ϕ′) ∈ {(〈`, s, π, γ, α〉, 〈`, s, i :: π, γ, α〉), (〈`, s, π, γ, α〉, 〈`, s, i :: π, γ, α〉)}

Ω :: ϕ :: Ω′ · Ξ :: ⟪`, `′, i :: π′, γ′, α′⟫ :: Ξ′ ·H · S ⇒ Ω :: ϕ′ :: Ω′ · Ξ :: ⟪`, `′, π′, γ′, α′⟫ :: Ξ′ ·H · S

(T-THREAD)
(ϕ,ϕ′) ∈ {(〈`, s, π, γ, α〉, 〈`, s, π, `t :: γ, α〉), (〈`, s, π, γ, α〉, 〈`, s, π, `t :: γ, α〉)}

Ω :: ϕ :: Ω′ · Ξ :: ⟪`, `′, π′, γ′ :: `t :: γ′′, α′⟫ :: Ξ′ ·H · S ⇒ Ω :: ϕ′ :: Ω′ · Ξ :: ⟪`, `′, π′, γ′ :: γ′′, α′⟫ :: Ξ′ ·H · S

(A-THREADSTART)
ϕ = 〈`, s, π, γ :: `′ :: γ′, α〉 ϕ′ = 〈`, s, π, γ :: γ′, α〉 ψ = ⟪`, `′, ε, ε, α′⟫ H(`′) = {|c′; (f 7→ v)∗|}

lookup(c′, run) = (c′′, st∗) sign(c′′, run) = Thread loc−−→ Void α′ = 〈c′′, run, 0 · `′ · st∗ · (rk 7→ 0)k≤loc, rloc+1 7→ `′〉
Ω :: ϕ :: Ω′ · Ξ ·H · S ⇒ Ω :: ϕ′ :: Ω′ · ψ :: Ξ ·H · S

TABLE XXV
NEW GLOBAL REDUCTION RULES

Table ?? recalls the rules introduced by [6] to model the activity life-cycle mechanism, with only minor modifications
to include the thread pool. Rule (A-ACTIVE) executes the statements of the active frame in the activity stack, using the
reduction relation for local configurations. Rule (A-DEACTIVATE) stops an activity frame from being active when it has
completed its computations. Rule (A-STEP) models the transition of the top-most activity frame from one activity state to
one of its successor in the activity life-cycle, and executes a callback method from this new activity state, provided some
side conditions related to the pending activity stack and the finished field of the activity object are met. Rule (A-DESTROY)
models the removal of a finished activity from the activity stack. Rule (A-BACK) is used by the system to finished the top-
most activity when the user hits the back button. Rule (A-REPLACE) models the screen orientation changing, by destroying
and restarting the top-most activity. Rule (A-HIDDEN) allows an activity in the background to take precedence over the
foreground activity, stopping or destroying it. Rule (A-START) allows to start a new activity: the top-most activity must be
paused or stopped, and must have an intent i sent to some activity c in its pending activity stack: a new activity of class
c is added to the top of the activity stack, its intent field is set to a serialized copy of i and its parent field is set to the
starting activity. Rule (A-SWAP) allows a parent activity to come back to the foreground, assuming the foreground activity
is finished and is one of its child activity. Finally, rule (A-RESULT) allows the top-most activity to return the result of its
computation to the parent activity, provided that the top-most activity is finished: a serialized copy of the result is sent to
the parent activity, which becomes active and executes the onActivityResult callback.
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(A-ACTIVE)
` · α · π · γ ·H · S  ` · α′ · π′ · γ′ ·H′ · S′

Ω :: 〈`, s, π, γ, α〉 :: Ω′ · Ξ ·H · S ⇒ Ω :: 〈`, s, π′, γ′, α′〉 :: Ω′ · Ξ ·H′ · S′

(A-DEACTIVATE)

Ω :: 〈`, s, π, γ, α〉 :: Ω′ · Ξ ·H · S ⇒ Ω :: 〈`, s, π, γ, α〉 :: Ω′ · Ξ ·H · S

(A-STEP)
(s, s′) ∈ Lifecycle

π 6= ε⇒ (s, s′) = (running, onPause) H(`).finished = true ⇒ (s, s′) ∈ {(running, onPause), (onPause, onStop), (onStop, onDestroy)}
〈`, s, π, γ, α〉 :: Ω · Ξ ·H · S ⇒ 〈`, s′, π, γ, α`.s′ 〉 :: Ω · Ξ ·H · S

(A-DESTROY)
H(`).finished = true

Ω :: 〈`, onDestroy, π, γ, α〉 :: Ω′ · Ξ ·H · S ⇒ Ω :: Ω′ · Ξ ·H · S

(A-BACK)
H′ = H[` 7→ H(`)[finished 7→ true]]

〈`, running, ε, γ, α〉 :: Ω · Ξ ·H · S ⇒ 〈`, running, ε, γ, α〉 :: Ω · Ξ ·H′ · S

(A-REPLACE)
H(`) = {|c; (fτ 7→ v)∗, finished 7→ u|} pc 6∈ dom(H) o = {|c; (fτ 7→ 0τ )∗, finished 7→ false|} H′ = H, pc 7→ o

〈`, onDestroy, π, γ, α〉 :: Ω · Ξ ·H · S ⇒ 〈pc, constructor, π, γ, αpc.constructor〉 :: Ω · Ξ ·H′ · S

(A-HIDDEN)
ϕ = 〈`, s, π, γ, α〉 s ∈ {onResume, onPause} (s′, s′′) ∈ {(onPause, onStop), (onStop, onDestroy)}

ϕ :: Ω :: 〈`′, s′, π′, γ′, α′〉 :: Ω′ · Ξ ·H · S ⇒ ϕ :: Ω :: 〈`′, s′′, π′, γ′, α`′.s′′ 〉 :: Ω′ · Ξ ·H · S

(A-START)
s ∈ {onPause, onStop} i = {|@c; (k 7→ v)∗|} ∅ ` serHBlk(i) = (i′, H′)

pc, p
′
in(c) 6∈ dom(H,H′) o = {|c; (fτ 7→ 0τ )∗, finished 7→ false, intent 7→ p′in(c), parent 7→ `|} H′′ = H,H′, pc 7→ o, p′in(c) 7→ i′

〈`, s, i :: π, γ, α〉 :: Ω · Ξ ·H · S ⇒ 〈pc, constructor, ε, ε, αpc.constructor〉 :: 〈`, s, π, γ, α〉 :: Ω · Ξ ·H′′ · S

(A-SWAP)
ϕ′ = 〈`′, onPause, ε, γ′, α′〉

H(`′).finished = true ϕ = 〈`, s, i :: π, γ, α〉
s ∈ {onPause, onStop} H(`′).parent = `

ϕ′ :: ϕ :: Ω · Ξ ·H · S ⇒ ϕ :: ϕ′ :: Ω · Ξ ·H · S

(A-RESULT)
ϕ′ = 〈`′, onPause, ε, γ′, α′〉 H(`′).finished = true ϕ = 〈`, s, ε, γ, α〉 s ∈ {onPause, onStop}
H(`′).parent = ` ∅ ` serHVal(H(`′).result) = (w′, H′) H′′ = (H,H′)[` 7→ H(`)[result 7→ w′]]

ϕ′ :: ϕ :: Ω · Ξ ·H · S ⇒ 〈`, s, ε, γ, α`.onActivityResult〉 :: ϕ′ :: Ω · Ξ ·H′′ · S

Conventions: the activity stack on the left-hand side does not contain underlined frames, with the exception of (A-DEACTIVATE) and (A-ACTIVATE)
TABLE XXVI

REDUCTION RULES FOR CONFIGURATIONS (Ω · Ξ ·H · S ⇒ Ω′ · Ξ′ ·H′ · S′)
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APPENDIX B
ABSTRACT SEMANTICS

1) Lifting functions: We first give the formal definition of the hlift(; ) and t̂ functions, that we informally described in
the body of the paper.

k̂ t̂ k̂′ =
(

pp 7→ max(k̂(pp), k̂′(pp))
)∗

hlift(ĥ; k̂) =

pp 7→


{|c; (f 7→ lift(û; k̂))∗|} if k̂(pp) = 0 ∧ ĥ(pp) = {|c; (f 7→ û)∗|}
{|@c; lift(û; k̂)|} if k̂(pp) = 0 ∧ ĥ(pp) = {|@c; û|}
τ [lift(û; k̂)] if k̂(pp) = 0 ∧ ĥ(pp) = τ [û]

⊥ otherwise


∗

2) Right-Hand Side: We can now present the rules for the abstract evaluation of right-hand sides (a formal description
is given in Table ??): to abstract a primitive value prim at a program point pp, we take the corresponding element p̂rim
from the underlying abstract domain. To abstract the content of a register ri at program point pp, we take the abstract
local state fact LStatepp(_; v̂∗; _; _) and we return the i-th abstract value v̂i. To abstract, at program point pp, the content
of the field f of an object whose location is stored in register ri, we retrieve the i-th abstract value v̂i from the abstract
fact LStatepp(_; v̂∗; ĥ; _): if v̂i contains any location abstraction λ̂, we look whether it is an abstract flow-sensitive location
FS(λ) or an abstract flow-insensitive location NFS(λ) : in the former case, we get the entry (λ 7→ ô) from the abstract
flow-sensitive heap ĥ, and we return the abstract value stored in the field f of the abstract object ô; in the latter case, we
try to find a matching flow-insensitive heap fact H(λ, ô) and we return the lifted value of the field f of the abstract object ô
contained therein. We similarly abstract the content of array cells, but in a field-insensitive fashion. To abstract the content
of a static field c.f at program point pp, we take any fact Sc,f(v̂) and we return the lifted abstract value v̂.

Remark 1 When getting an abstract value from a flow-insensitive heap fact, a static field fact or an array we lift it,
by returning lift(v̂; 1∗) 4. This is due to the fact that, by definition, a flow-insensitive memory block cannot contain a
location to a flow-sensitive memory block. Therefore we chose that instead of lifting abstract locations before putting them
in abstract flow-insensitive facts, arrays or static fields, we lift abstract locations when performing look-ups. We believe
this to (slightly) simplify the abstract semantics and the soundness proof.

〈〈prim〉〉pp = {RHSpp(p̂rim)} 〈〈ri〉〉pp = {LStatepp(_; v̂∗; _; _) =⇒ RHSpp(v̂i)} 〈〈c.f〉〉pp = {Sc,f(v̂) =⇒ RHSpp(lift(v̂; 1∗))}

〈〈ri.f〉〉pp = {LStatepp(_; v̂∗; ĥ; _) ∧ GetBlki(v̂
∗; ĥ;NFS(λ); {|c; (f ′ 7→ v̂′)∗, f 7→ û|}) =⇒ RHSpp(lift(û; 1∗))}

∪ {LStatepp(_; v̂∗; ĥ; _) ∧ GetBlki(v̂
∗; ĥ;FS(λ); {|c; (f ′ 7→ v̂′)∗, f 7→ û|}) =⇒ RHSpp(û)}

〈〈ri[rj ]〉〉pp = {LStatepp(_; v̂∗; ĥ; _) ∧ GetBlki(v̂
∗; ĥ;NFS(λ); τ [û]) =⇒ RHSpp(lift(û; 1∗))}

∪ {LStatepp(_; v̂∗; ĥ; _) ∧ GetBlki(v̂
∗; ĥ;FS(λ); τ [û]) =⇒ RHSpp(û)}

TABLE XXVII
ABSTRACT EVALUATION OF RIGHT-HAND SIDES

3) Activity Abstraction: We will now describe the rules abstracting the activity life-cycle and thread management
mechanisms, which are given in Table ??. The rule (TSTART) over-approximates the spawning of a new thread
T(λ, {|c; (f 7→ _)∗|}) by generating an abstract local state running the method run of the corresponding thread object.
The rule (CBK) abstracts the callback invocation by generating an abstract local heap fact for all the callbacks of a started
activity. Observe that the initial arguments supplied are over-approximated by >, since they depend on user-inputs and
are not statistically known. The rule (FIN) roughly over-approximates whether an activity is finished or not: it always
replaces the finished field of an activity object by >bool. The rule (REP) restarts abstract activity objects at any time, by
re-setting their fields to their default initial abstract value 0̂τ (this over-approximates the restarting of an activity when the
screen orientation changes). The rule (ACT) handles the starting of new activities: if an intent Ic′({|@in(c); v̂∗|}) has been
sent to an activity c by an activity c′, the rule creates a new abstract activity object of class c with properly bound and
initialized fields. It also creates a new special abstract heap fact H(in(c), {|@c; v̂∗|}) that contains a copy of the sent intent:

4We abuse the notation here: 1∗ should be interpreted as (_ 7→ 1)∗.
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this over-approximates the serialization mechanism, and is sound because the intent contains only abstract flow-insensitive
locations, that are updated with weak updates. The rule (RES) over-approximates the mechanism by which an child activity
returns a result to its parent activity. Finally rule (SUB) contains subtyping judgments for classes, and rule (PO) contain
partial ordering rules for abstract values.

Tstart = {T(λ, {|c; (f 7→ _)∗|}) ∧ c ≤ c′ ∧ c ≤ Thread

=⇒ LStatec′,run,0((NFS(λ),NFS(λ)); (0̂k)k≤loc ,NFS(λ); (⊥)∗; 0∗) | c′ ∈ l̂ookup(run) ∧ sign(c′, run) = Thread loc−−→ Void}
Cbk = {H(c, {|c; (f 7→ _)∗|}) ∧ c ≤ c′ =⇒ LStatec′,m,0((NFS(c), (>τj )j≤n); (0̂k)k≤loc ,NFS(c), (>τj )j≤n; (⊥)∗; 0∗) |

c′ is an activity class ∧ ∃s : m ∈ cb(c′, s) ∧ sign(c′,m) = τ1, . . . , τn
loc−−→ τ}

Fin = {H(c, {|c; (f 7→ _)∗, finished 7→ _|}) =⇒ H(c, {|c; (f 7→ _)∗, finished 7→ >bool|})}
Rep = {H(c, {|c; (fτ 7→ _)∗|}) =⇒ H(c, {|c; (fτ 7→ 0̂τ )∗|})}
Act = {Ic′ ({|@c; v̂|})) =⇒ H(in(c), {|@c; v̂|})}∪

{Ic′ ({|@c; v̂|})) =⇒ H(c, {|c; (fτ 7→ 0̂τ )∗, finished 7→ f̂alse, parent 7→ c′, intent 7→ in(c)|})}
Res = {H(c′, {|c′; (f ′ 7→ _)∗, parent 7→ c, result 7→ ŵ|} ∧ H(c, {|c; (f 7→ _)∗, result 7→ _|}

=⇒ H(c, {|c; (f 7→ _)∗, result 7→ ŵ|}}
Sub = {τ ≤ τ ′ | τ ≤ τ ′ is a valid subtyping judgment}
Po = {v̂ v v̂′ | v̂ v v̂′ is a valid partial ordering}

TABLE XXVIII
ABSTRACT SEMANTICS OF µ-DALVIKA - ACTIVITY RULES

4) Statement Abstraction: Before giving the abstract rule for Dalvik statements, we need to define the abstract counter-
part of the typeH(b) function:

Definition 8 Given an abstract memory block b̂, we define a function ̂get-type(b̂) as follows:

̂get-type(b̂) =


c if b̂ = {|c; (f 7→ v̂)∗|}
array[τ ] if b̂ = τ [v̂]

Intent if b̂ = {|@c; v̂|}

For all standard Dalvik statement st and program point pp, the rule (|st |)pp abstracts the action of st at program point
pp. The most important rules have already been described in the main body of this paper, and the full set of rules is given
in Table ??, Table ?? and Table ??. A few points are worth mentioning:
• (|wait ri|)pp : We just check whether the inte field of the abstract object over-approximating the running thread or

activity is over-approximating t̂rue , in which case an abstract abnormal local state throwing an IntExcpt is generated,
or f̂alse , in which case the abstract local state is propagated to the next program point;

• (|monitor-enter ri|)pp and (|monitor-exit ri|)pp : Given that monitors are synchronization constructs, it is
sound to ignore them when checking reachability properties, which is the target of the present work. There are of
course more precise ways of abstracting monitors, but they would make the analysis more complicated and their
practical benefits are unclear.

• (|start-act ri|)pp : When an abstract intent {|@c′; û|} stored in the flow-sensitive heap at program point λ̂ is used
to start a new (abstract) activity, every abstract flow-sensitive location reachable from λ̂ in ĥ (represented by the
abstract filter k̂′ computed by Reach(FS(λ); ĥ; k̂′)) is being lifted, to make sure that these heap entries are abstract in
a flow-insensitive fashion, since they are being shared between the parent and the started child activity.
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(|goto pc′|)pp = {LStatepp(_; v̂∗; _; _) =⇒ LStatec,m,pc′ (_; v̂∗; _; _)}
(|if4 ri rj then pc′|)pp = {LStatepp(_; v̂∗; _; _) ∧ v̂i 4̂ v̂j =⇒ LStatec,m,pc′ (_; v̂∗; _; _)}∪

{LStatepp(_; v̂∗; _; _) ∧ v̂i <̂� v̂j =⇒ LStatec,m,pc+1(_; v̂∗; _; _)}
(|binop⊕ rd ri rj |)pp = {LStatepp(_; v̂∗; _; _) =⇒ LStatec,m,pc+1(_; v̂∗[d 7→ v̂i ⊕̂ v̂j ]; _; _)}
(|unop� rd ri|)pp = {LStatepp(_; v̂∗; _; _) =⇒ LStatec,m,pc+1(_; v̂∗[d 7→ �̂ v̂i]; _; _)}
(|move rd rhs|)pp = 〈〈rhs〉〉pp ∪ {RHSpp(v̂′) ∧ LStatepp(_; v̂∗; _; _) =⇒ LStatec,m,pc+1(_; v̂∗[d 7→ v̂′]; _; _)}
(|move ra[ridx ] rhs|)pp = 〈〈rhs〉〉pp ∪ {RHSpp(v̂′′) ∧ LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlka(v̂∗; ĥ;NFS(λ); τ [v̂′]) ∧ Reach(v̂′′; ĥ; k̂′)

=⇒ H(λ, τ [v̂′ t v̂′′]) ∧ LiftHeap(ĥ; k̂′) ∧ LStatec,m,pc+1(_; lift(v̂∗; k̂′); hlift(ĥ; k̂′); k̂ t̂ k̂′)}∪
{RHSpp(v̂′′) ∧ LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlka(v̂∗; ĥ;FS(λ); τ [v̂′])

=⇒ LStatec,m,pc+1(_; v̂∗; ĥ[λ 7→ τ [v̂′ t v̂′′]; k̂)}
(|move ro.f rhs|)pp = 〈〈rhs〉〉pp ∪ {RHSpp(v̂′′) ∧ LStatepp(_; v̂∗; ĥ; k̂)

∧GetBlko(v̂∗; ĥ;NFS(λ); {|c′; (f ′ 7→ û′)∗, f 7→ v̂′|}) ∧ Reach(v̂′′; ĥ; k̂′) =⇒
H(λ, {|c′; (f ′ 7→ û′)∗, f 7→ v̂′′)|}) ∧ LiftHeap(ĥ; k̂′) ∧ LStatec,m,pc+1(_; lift(v̂∗; k̂′); hlift(ĥ; k̂′); k̂ t̂ k̂′)}∪
{RHSpp(v̂′′) ∧ LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ;FS(λ); {|c′; (f ′ 7→ û′)∗, f 7→ v̂′|})
=⇒ LStatec,m,pc+1(_; v̂∗; ĥ[λ 7→ {|c′; (f ′ 7→ û′)∗, f 7→ v̂′′|}; k̂)}

(|move c′.f rhs|)pp = 〈〈rhs〉〉pp ∪ {RHSpp(v̂′) ∧ LStatepp(_; v̂∗; ĥ; k̂) ∧ Reach(v̂′; ĥ; k̂′)

=⇒ Sc′,f(v̂
′) ∧ LiftHeap(ĥ; k̂′) ∧ LStatec,m,pc+1(_; lift(v̂∗; k̂′); hlift(ĥ; k̂′); k̂ t̂ k̂′)}

(|instof rd rs τ |)pp = {LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlks(v̂∗; ĥ; _; b̂) ∧ ̂get-type(b̂) ≤ τ
=⇒ LStatec,m,pc+1(_; v̂∗[d 7→ t̂rue]; ĥ; k̂)}∪
{LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlks(v̂∗; ĥ; _; b̂) ∧ ̂get-type(b̂) 6≤ τ
=⇒ LStatec,m,pc+1(_; v̂∗[d 7→ f̂alse]; ĥ; k̂)}

(|checkcast rs τ |)pp = {LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlks(v̂∗; ĥ; _; b̂) ∧ ̂get-type(b̂) ≤ τ =⇒ LStatec,m,pc+1(_; v̂∗; ĥ; k̂)}
(|new rd c′|)pp = {LStatepp(_; v̂∗; ĥ; k̂) ∧ Reach(FS(pp); ĥ; k̂′) =⇒

LiftHeap(ĥ; k̂′) ∧ LStatec,m,pc+1(_; lift(v̂∗; k̂′)[d 7→ FS(pp)]; hlift(ĥ; k̂′)[pp 7→ {|c′; (f 7→ 0̂τ )∗|}]; k̂ t̂ k̂′)}
(|newintent rd c′|)pp = {LStatepp(_; v̂∗; ĥ; k̂) ∧ Reach(FS(pp); ĥ; k̂′)

=⇒ LiftHeap(ĥ; k̂′) ∧ LStatec,m,pc+1(_; lift(v̂∗; k̂′)[d 7→ FS(pp)]; hlift(ĥ; k̂′)[pp 7→ {|@c′;⊥|})]; k̂ t̂ k̂′)}
(|newarray rd rl τ |)pp = {LStatepp(_; v̂∗; ĥ; k̂) ∧ Reach(FS(pp); ĥ; k̂′)

=⇒ LiftHeap(ĥ; k̂′) ∧ LStatec,m,pc+1(_; lift(v̂∗; k̂′)[d 7→ FS(pp)]; hlift(ĥ; k̂′)[pp 7→ τ [0̂τ ])]; k̂ t̂ k̂′)}
(|start-act ri|)pp = {LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ;NFS(λ); {|@c′; û|})

=⇒ Ic({|@c′; û|}) ∧ LStatec,m,pc+1(_; v̂∗; ĥ; k̂)}∪
{LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ;FS(λ); {|@c′; û|}) ∧ Reach(FS(λ); ĥ; k̂′)

=⇒ Ic({|@c′; û|}) ∧ LiftHeap(ĥ; k̂′) ∧ LStatec,m,pc+1(_; lift(v̂∗; k̂′); hlift(ĥ; k̂′); k̂ t̂ k̂′)}
(|put-extra ri rk rj |)pp = {LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ;NFS(λ); {|@c′; v̂′|}) ∧ Reach(v̂j ; ĥ; k̂′) =⇒

H(λ, {|@c′; v̂′ t v̂j |}) ∧ LiftHeap(ĥ; k̂′) ∧ LStatec,m,pc+1(_; lift(v̂∗; k̂′); hlift(ĥ; k̂′); k̂ t̂ k̂′)}∪
{LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ;FS(λ); {|@c′; v̂′|})
=⇒ LStatec,m,pc+1(_; v̂∗; ĥ[λ 7→ {|@c′; v̂′ t v̂j |}]; k̂)}

(|get-extra ri rk τ |)pp = {LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ; _; {|@c′; v̂′|}) =⇒ LStatec,m,pc+1(_; v̂∗[res 7→ v̂′]; ĥ; k̂)}
(|return|)pp = {LStatepp((λ̂t, v̂∗call); v̂

∗; ĥ; k̂) =⇒ Resc,m((λ̂t, v̂∗call); v̂res; ĥ; k̂)}

Conventions: pp = c,m, pc
TABLE XXIX

ABSTRACT SEMANTICS OF µ-DALVIKA - STANDARD STATEMENTS

• (|invoke ro m′ (rij )j≤n|)pp =

{LStatepp((λ̂t, _); v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ; _; {|c′; (f 7→ û)∗|}) ∧ c′ ≤ c′′

=⇒ LStatec′′,m′,0((λ̂t, (v̂ij )j≤n); (0̂k)k≤loc , (v̂ij )j≤n; ĥ; 0∗) | c′′ ∈ l̂ookup(m′) ∧ sign(c′′,m′) = (τj)
j≤n loc−−→ τ}∪

{LStatepp((λ̂t, _); v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ; _; {|c′; (f 7→ û)∗|}) ∧ c′ ≤ c′′ ∧ Resc′′,m′ ((λ̂
′
t, ŵ
∗); v̂′res; ĥres; k̂res)

∧ λ̂t = λ̂′t ∧
(∧

j≤n v̂ij u ŵj 6v ⊥
)

=⇒ LStatec,m,pc+1((λ̂t, _); lift(v̂∗; k̂res)[res 7→ v̂′res]; ĥres; k̂ t̂ k̂res) | c′′ ∈ l̂ookup(m′)}
{LStatepp((λ̂t, _); v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ; _; {|c′; (f 7→ û)∗|}) ∧ c′ ≤ c′′ ∧ Uncaughtc′′,m′ ((λ̂

′
t, ŵ
∗)); v̂′excpt; ĥres; k̂res)

∧ λ̂t = λ̂′t ∧
(∧

j≤n v̂ij u ŵj 6v ⊥
)

=⇒ AStatec,m,pc((λ̂t, _); lift(v̂∗; k̂res)[excpt 7→ v̂′excpt]; ĥres; k̂ t̂ k̂res) | c
′′ ∈ l̂ookup(m′)}

• (|sinvoke c′ m′ (rij )j≤n|)pp =

{LStatepp((λ̂t, _); v̂∗; ĥ; k̂) =⇒ LStatec′,m′,0((λ̂t, (v̂ij )j≤n); (0̂k)k≤loc , (v̂ij )j≤n; ĥ; 0∗) | sign(c′,m′) = (τj)
j≤n loc−−→ τ}∪

{LStatepp((λ̂t, _); v̂∗; ĥ; k̂) ∧ Resc′,m′ ((λ̂
′
t, ŵ
∗); v̂′res; ĥres; k̂res) ∧ λ̂t = λ̂′t ∧

(∧
j≤n v̂ij u ŵj 6v ⊥

)
=⇒ LStatec,m,pc+1((λ̂t, _); lift(v̂∗; k̂res)[res 7→ v̂′res]; ĥres; k̂ t̂ k̂res)}

{LStatepp((λ̂t, _); v̂∗; ĥ; k̂) ∧ Uncaughtc′,m′ ((λ̂
′
t, ŵ
∗); v̂′excpt; ĥres; k̂res) ∧ λ̂t = λ̂′t ∧

(∧
j≤n v̂ij u ŵj 6v ⊥

)
=⇒ AStatec,m,pc((λ̂t, _); lift(v̂∗; k̂res)[excpt 7→ v̂′excpt]; ĥres; k̂ t̂ k̂res)}

Conventions: pp = c,m, pc
TABLE XXX

ABSTRACT SEMANTICS OF µ-DALVIKA - INVOKE STATEMENTS
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Statement Abstractions:
(|start-thread ri|)pp = {LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ;NFS(λ); {|c′; (f 7→ û)∗|}) ∧ c′ ≤ Thread

=⇒ T(λ, {|c′; (f 7→ û)∗|}) ∧ LStatec,m,pc+1(_; v̂∗; ĥ; k̂)}∪
{LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ;FS(λ); {|c′; (f 7→ û)∗|}) ∧ c′ ≤ Thread ∧ Reach(FS(λ); ĥ; k̂′)

=⇒ T(λ, {|c′; (f 7→ û)∗|}) ∧ LiftHeap(ĥ; k̂′) ∧ LStatec,m,pc+1(_; lift(v̂∗; k̂′); hlift(ĥ; k̂′); k̂ t̂ k̂′)}
(|interrupt ri|)pp = {LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ;NFS(λ); {|c′; (f 7→ û)∗, inte 7→ _|})

=⇒ H(λ, {|c′; (f 7→ û)∗, inte 7→ t̂rue|} ∧ LStatec,m,pc+1(_; v̂∗; ĥ; k̂)}∪
{LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ;FS(λ); {|c′; (f 7→ û)∗, inte 7→ _|})
=⇒ LStatec,m,pc+1(_; v̂∗; ĥ[λ 7→ {|c′; (f 7→ û)∗, inte 7→ t̂rue|}]; k̂)}

(|interrupted ri|)pp = {LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ;NFS(λ); {|c′; (f 7→ û)∗, inte 7→ v̂′|})
=⇒ H(λ, {|c′; (f 7→ û)∗, inte 7→ f̂alse|} ∧ LStatec,m,pc+1(_; v̂∗[res 7→ v̂′]; ĥ; k̂)}∪
{LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ;FS(λ); {|c′; (f 7→ û)∗, inte 7→ v̂′|})
=⇒ LStatec,m,pc+1(_; v̂∗[res 7→ v̂′]; ĥ[λ 7→ {|c′; (f 7→ û)∗, inte 7→ f̂alse|}]; k̂)}

(|is-interrupted ri|)pp = {LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ; _; {|c′; (f 7→ û)∗, inte 7→ v̂′|})
=⇒ LStatec,m,pc+1(_; v̂∗[res 7→ v̂′]; ĥ; k̂)}

(|join ri|)pp = {LStatepp((NFS(λt), _); v̂∗; ĥ; k̂) ∧ H(λt, {|c′; (f 7→ û)∗, inte 7→ v̂′|}) ∧ f̂alse v v̂′
=⇒ LStatec,m,pc+1((NFS(λt), _); v̂∗; ĥ; k̂)}∪
{LStatepp((NFS(λt), _); v̂∗; ĥ; k̂) ∧ H(λt, {|c′; (f 7→ û)∗, inte 7→ v̂′|}) ∧ t̂rue v v̂′ =⇒
H(pp; {|IntExcpt; |}) ∧ AStatepp((NFS(λt), _); v̂∗[excpt 7→ NFS(pp)]; ĥ; k̂) ∧ H(λt, {|c′; (f 7→ û)∗, inte 7→ f̂alse|})}

(|wait ri|)pp = {LStatepp((NFS(λt), _); v̂∗; ĥ; k̂) ∧ H(λt, {|c′; (f 7→ û)∗, inte 7→ v̂′|}) ∧ f̂alse v v̂′
=⇒ LStatec,m,pc+1((NFS(λt), _); v̂∗; ĥ; k̂)}∪
{LStatepp((NFS(λt), _); v̂∗; ĥ; k̂) ∧ H(λt, {|c′; (f 7→ û)∗, inte 7→ v̂′|}) ∧ t̂rue v v̂′ =⇒
H(pp; {|IntExcpt; |}) ∧ AStatepp((NFS(λt), _); v̂∗[excpt 7→ NFS(pp)]; ĥ; k̂) ∧ H(λt, {|c′; (f 7→ û)∗, inte 7→ f̂alse|})}

(|monitor-enter ri|)pp = {LStatepp(_; v̂∗; ĥ; k̂) =⇒ LStatec,m,pc+1(_; v̂∗; ĥ; k̂)}
(|monitor-exit ri|)pp = {LStatepp(_; v̂∗; ĥ; k̂) =⇒ LStatec,m,pc+1(_; v̂∗; ĥ; k̂)}
(|throw ri|)pp = {LStatec,m,pc(_; v̂∗; ĥ; k̂) =⇒ AStatec,m,pc′ (_; v̂∗[excpt 7→ v̂i]; ĥ; k̂)}
(|move-except rd|)pp = {LStatec,m,pc(_; v̂∗; ĥ; k̂) =⇒ LStatec,m,pc+1(_; v̂∗[d 7→ v̂excpt]; ĥ; k̂)}

Global Abstractions:
AbState = {AStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlkexcpt(v̂

∗; ĥ; _; {|c′; _|}) ∧ c′ ≤ Throwable
=⇒ LStatec,m,pc′ (_; v̂∗; ĥ; k̂) | ExcptTable(c,m, pc, c′) = pc′}
{AStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlkexcpt(v̂

∗; ĥ; _; {|c′; _|}) ∧ c′ ≤ Throwable
=⇒ Uncaughtc,m(_; v̂excpt; ĥ; k̂) | ExcptTable(c,m, pc, c′) = ⊥}

Conventions: pp = c,m, pc
TABLE XXXI

ABSTRACT SEMANTICS OF µ-DALVIKA - RULES FOR NEW STATEMENTS
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APPENDIX C
PROOFS

Before entering in the formalism, we are going to give an informal description of the difficulties. The main problem is
that knowing which locations are going to be abstracted as abstract flow-sensitive locations and which locations are going
to be abstracted as abstract flow-insensitive locations is dynamically determined by the analysis: this is not a property of
the concrete semantics that is abstracted. That is, given a snapshot of an execution (a configuration Ψ), there is no unique
correct way of choosing which locations should be handled in a flow-sensitive fashion, since the information about who
are the most-recently allocated locations is not stored in Ψ. Therefore there are several ways of abstracting a configuration:
there is one possible abstraction of a configuration for each decomposition of the set of locations into locations that are
handled in a flow-sensitive fashion and location that are handled in a flow-insensitive fashion, and for each history of the
heap. An history is a record of which locations used to be abstracted as abstract flow-sensitive locations, and when they
were lifted. To see why it is necessary to take into account the history, consider the following example.

Example 1 Consider the following call-stack: α = 〈c,m, pc · R · st∗ · u〉 :: 〈c′,m′, pc′ · R′ · st ′∗ · _〉 with R = (r1 7→
ppp, r2 7→ p′pp), u = ppp and R′ = (r 7→ ppp).

Here there are several possible abstractions of this call-stack: for example, ppp could have been lifted before c′,m′

invoked c,m, and c,m could have just allocated a new object at location p′pp, in which case ppp is abstracted in a
flow-insensitive fashion in both c,m and c′,m′.

But another possibility is that, when c′,m′ invoked c,m, the location ppp was abstracted in a flow-sensitive fashion.
Then later on c,m allocated a new object with location p′pp at program point pp, and ppp was lifted. In that case, ppp
would abstracted in a flow-sensitive fashion in c′,m′ and in a flow-insensitive fashion in c,m. Therefore we need to record
that ppp used to be abstract in a flow-sensitive fashion, and that lifting occurred somewhere between c′,m′ and c,m: this
will be done using filters (which are the concrete counter-part of abstract filters).

A. Heap decompositions

We are now going to define formally what is the decomposition of a heap between a sub-heap (that will be handled in a
flow-insensitive fashion) and local heaps (that will be handled in a flow-sensitive fashion). To do so we first need several
definitions.

a) Heap: Formally we defined heaps as finite sequences of key-value bindings between a location and a memory
block. We can then state that some location ` maps to b by (` 7→ b) ∈ H . The active domain of a heap H , denoted by
dom(H), is the finite set of locations having a mapping in H .

For convenience reasons, we would like to see a heap H as a function from the set of locations to memory block: to
do so we use the special symbol ⊥ that we introduced for abstract flow-sensitive heap entries. We will see the heap as a
function that maps any location to a memory block or ⊥. Since the heap is a finite sequence of key-value bindings between
a location and a memory block, this function has a finite support. To summarize, if one reads (` 7→ b) ∈ H then we know
that ` is in the active domain of H and that it points to the memory block b, whereas H(`) may be either a memory block,
or the empty block ⊥.

b) Local heap: Intuitively a local heap K is a heap such that for all pp, there is at most one memory block b such
that (pp 7→ b) ∈ K. For technical reasons we will consider a slightly different definition: a local heap is a finite sequence
of key-value bindings from locations to memory block or ⊥ such that there is exactly one key-value binding for all pp.
Formally we have:

Definition 9 A heap K is a local heap if and only if it satisfies the following equations:
• ∀pp, p, p′. ppp ∈ dom(K) ∧ p′pp ∈ dom(K)⇒ p = p′

• ∀pp.∃p.(ppp 7→ _) ∈ K

Remark 2 Observe that if a heap H and some local heaps (Ki)i≤n have disjoint domains then we can easily define their
union.

We define the relation H →ref G between two heaps (local or not), to holds if the heap H contains an memory block
storing a location to an element of G.

Definition 10 H →ref G if and only if there exists (_ 7→ b) ∈ H such that one of the following cases holds:
• b = {|c; (fi 7→ vi)

∗|} ∈ H and there exists j such that vj ∈ dom(G).
• b = {|@c; (fi 7→ vi)

∗|} ∈ H and there exists j such that vj ∈ dom(G).
• b = τ [v∗] ∈ H and there exists j such that vj ∈ dom(G).
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Now we can define what the heap decomposition of a heap
together with a static heap is. Intuitively it is a partitioning
of the heap H into a heap G and a finite set of local heaps
(Ki)i≤n such we have no locations going from G to any Ki,
or from Ki to Kj for any i 6= j (we allow locations from Ki

to Ki or to G, and locations from G to itself). Formally:

Definition 11 (G, (Ki)i≤n) is a heap decomposition of H ·S
if and only if:
• H = G ∪

⋃
i≤nKi

• ∀i.dom(G) ∩ dom(Ki) = ∅
• ∀i 6= j.dom(Ki) ∩ dom(Kj) = ∅
• ∀i.G ∪ S 6→ref Ki and ∀j 6= i.Ki 6→ref Kj

K1

K2

K3

G

| |

|

|

|

|

H

Example: a local heap decomposition with three local
heaps.

B. Filter history

We are now going to define formally what the history of a configuration is. As we mentioned earlier, this is used to
determine which locations were lifted, and when (in a given call-stack). It turns out that this definition is quite technical,
because we need to make sure that the history of a configuration respected some properties: no locations should have been
lifted twice, and a location to an object cannot appear in a local state that is situated in the call-stack before the local state
that allocated this object.

First, we are going to define what a filter is. Filters are going to be used to represent one layer of the history, that is
which locations were lifted between two local states.

Definition 12 A filter lk is a mapping from locations to {0, 1} such that for all pp, there exists at most one p such that
lk(ppp) = 1. Besides we define the following function:

lk tloc lk′ =

ppp 7→


1 if lk′(ppp) = 1

1 if lk(ppp) = 1 and ∀p′pp, lk
′(p′pp) = 0

0 otherwise


∗

Proposition 1 The binary operation tloc admits (pp 7→ 0)∗ as left and right neuter and is associative.

Remark 3 tloc is not commutative.

The history of a call-stack α = L1 :: · · · :: Ln is going to be recorded using a list of filters (lkj)j , such that for all i,
lki records which locations were lifted between Li and Li+1. We then define, for all i, the function Γi(Ka, (lk

j)j) that,
given a local heap and an history, give us which for all program point pp the location which is handled in a flow-sensitive
fashion in the local state Li.

Definition 13 For all i ∈ N∪{+∞}, Γi(Ka, (lk
j)j) is the function defined as follows: let lk = lk1 tloc . . .tloc lki−1, then

Γi(Ka, (lk
j)j) =

(
pp 7→

{
ppp if lk(ppp) = 1

ppp if ppp ∈ dom(Ka) ∧ ∀p′pp, lk(p′pp) = 0

)∗
A graphical representation of Γ on an example can be found in Figure ??.

Proposition 2 (Properties of Γ) For all (Ka, (lki)1≤i≤n) we have :
1) For all i ∈ {n+ 1, n+ 2, . . . } ∪ {∞}, Γi(Ka, (lkj)1≤j≤n) = Γn+1(Ka, (lkj)1≤j≤n)
2) If n ≥ 2, then for all i > 1, Γi+1(Ka, (lkj)1≤j≤n) = Γi(Ka, (lk1 tloc lk2) :: (lkj)3≤j≤n)
3) For all i ≥ 0, Γi(Ka, (lkj)1≤j≤n) = Γi+1(Ka, (pp 7→ 0)∗ :: (lkj)1≤j≤n)
4) Let K ′a be a local heap such that dom(Ka) = dom(K ′a). Then for all j we have:

Γi(Ka, (lkj)1≤j≤n) = Γi(K ′a, (lkj)1≤j≤n)

5) Let lka be a filter such that ∀`, lka(`) = 1 =⇒ ` ∈ dom(Ka). Let K ′a be a local heap such that :

dom(K ′a)\
{
ppp ∈ dom(K ′a) | ∃p′, lka(p′pp) = 1

}
⊆ dom(Ka)
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lk1

lk2

lk3

lk4

lk5

Ka

pp1

`1

pp2

`2

pp3

`3

pp4

`4

pp5

`5

pp6

`6

pp7

`7

`8 `9 `10

`11

`12 `13 `14

`15 `16

`17 `18

Γ2(Ka, (lki)i≤5)

Γ4(Ka, (lki)i≤5)

Convention: Each line of the table represents one local filter, by having a pointer ` in position (lki, ppj) if and only if there exists p such that ` = ppp
and lki(`) = 1. The last line represent the domain of the local heap Ka.
The pointer framed by red (resp. green) in column ppi is the image of ppi by Γ2(Ka(lki)i≤5) (resp. Γ4(Ka, (lki)i≤5)).

TABLE XXXII
GRAPHICAL REPRESENTATION OF THE Γj(Ka, (lki)i≤n) FUNCTIONS

Then for all i ≥ 2 we have:

Γi(Ka, (lkj)1≤j≤n) = Γi(K ′a, (lka tloc lk1) :: (lkj)2≤j≤n)

We can now define when (K, (lkj)j) is a filter history of a call-stack α. Equation (??) expresses that a location never
appears before it was allocated: this is done by stating that if, for a given pp, the location ppp being handled in a flow-
sensitive fashion in the local state Li is not the same one than in local state Lj (where Lj appears before Li in the
call-stack), then no object was stored at location ppp when Lj was the top-most element of the call-stack. Therefore ppp
cannot appear in any of the local state Lj :: . . . Ln. Equation (??) expresses the fact that no location was lifted twice, and
that if a location is in the local heap then it was never lifted.

Definition 14 (K, (lkj)j) is a filter history of α = L1 :: · · · :: Ln if and only if for all 1 ≤ i < l ≤ n and for all pp we
have:

Γi(K, (lkj)j)(pp) 6= Γl(K, (lkj)j)(pp) =⇒ Γi(K, (lkj)j)(pp) 6∈ dom(Ll :: . . . :: Ln) (1)

∀i,∀ppp,
(
(i = 0 ∧ ppp ∈ dom(K)) ∨ lki(ppp) = 1

)
=⇒ ∀j 6= i, lkj(ppp) = 0 (2)

The following (rather technical) lemma gives sufficient conditions to show that (K ′a, (lk
′j)j) is a filter history, knowing

that (Ka, (lk
j)j) is a filter history and that (Ka, (lk

j)j) and (K ′a, (lk
′j)j) coincide everywhere except on the top-most filter

and on the local heap.

Lemma 2 Let (K, (lkj)j) be a filter history of α = L1 :: αt. Let α′ = L′1 :: αt, and (K ′a, (lk
′j)j) be such that (lk′j)j =

lk′1 :: (lkj)j>1, and let n be the length of α′. If the four following conditions holds:

∀i > 1,∀pp,Γi(K, (lkj)j)(pp) = Γi(K ′, (lk′j)j)(pp) (3)
(dom(K ′)\dom(K)) ∩ dom(αt) = ∅ (4)

(dom(K ′)\dom(K)) ∩ {` | ∃j, lkj(`) = 1} = ∅ (5)

{` | lk′1(`) = 1 ∧ lk′1(`) 6= lk1(`)} ⊆ dom(K)\dom(K ′) (6)

then (K ′, (lk′j)j) is a filter history of α′.

Proof: This proof is done in two steps:
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• First we are going to show that for all 1 ≤ i < j < n we have:

Γi(K ′, (lk′j)j)(pp) 6= Γl(K ′, (lk′j)j)(pp) =⇒ Γi(K ′, (lk′j)j)(pp) 6∈ dom(α′l :: . . . :: α′n) (7)

– For 1 < i < l ≤ n, using Equation (??) we have that Γi(K ′a, (lk
′j)j)(pp) 6= Γl(K ′a, (lk

′j)j)(pp) implies that
Γi(Ka, (lk

j)j)(pp) 6= Γl(Ka, (lk
j)j)(pp). Since (Ka, (lk

j)j) is a filter history of L1 :: αt, this implies that
Γi(Ka, (lk

j)j)(pp) 6∈ dom(αl :: . . . :: αn). Since l > 1, dom(αl :: . . . :: αn) = dom(α′l :: . . . :: α′n). Moreover
using Equation (??) again we know that Γi(Ka, (lk

j)j)(pp) = Γi(K ′a, (lk
′j)j)(pp), therefore Equation (??) holds.

– For i = 1, and 1 < l ≤ n. If Γ1(K ′, (lk′j)j)(pp) = Γ1(K, (lkj)j)(pp) then the same argument works.
If Γ1(K ′, (lk′j)j)(pp) 6= Γ1(K, (lkj)j)(pp), then since locations are annotated by their allocation point, and
each local heap domain contains at most one location for each allocation point, we have Γ1(K ′, (lk′j)j)(pp) ∈
(dom(K ′)\dom(K)). Therefore by applying Equation (??) we get that Γ1(K ′, (lk′j)j)(pp) 6∈ dom(αt), which
shows that Equation (??) holds.

• Now we are going to show that:

∀i,∀ppp,
(
(i = 0 ∧ ppp ∈ dom(K ′)) ∨ lk′i(ppp) = 1

)
=⇒ ∀j 6= i, lk′j(ppp) = 0

Since we know that (K, (lkj)j) is a filter history, we just need to show it for i = 0 and i = 1.
– i = 0. Let ` = ppp ∈ dom(K ′). In a first time assume that ` ∈ dom(K). Since (K, (lk)j)j is a filter history we

know that for all j > 2, lk′j(`) = lkj(`) = 0. It remains to show that lk′1(`) = lk1(`) = 0: if lk′1(`) = 0 then we
have nothing to prove, and if lk′1(`) 6= 0 then since ` ∈ dom(K ′), Equation (??) gives us that lk1(`) = lk′1(`) 6= 0,
which contradicts the fact that (K, (lk)j)j is a filter history.
Now assume that ` 6∈ dom(K). Then by Equation (??) we know that ∀j > 2, lk′j(`) = lkj(`). Besides by
Equation (??) we know that either lk′1(`) = 0, in which case we have nothing to prove, or that lk′1(`) = lk1(`) = 1,
which contradict Equation (??).

– i = 1. Let ` = ppp be such that lk′1(`) = 1. If lk′1(`) = lk1(`) then since (K, (lk)j)j is a filter history we know
that for all j > 2, lk′j(`) = lkj(`) = 0. If lk′1(`) 6= lk1(`) then by Equation (??) we know that ` ∈ dom(K) and
we conclude again by using the fact that (K, (lk)j)j is a filter history.

C. Configuration Decomposition

The heap decomposition notion is relative to a heap, and the filter history notion is relative to a call-stack. We then link
these two notions into the local configuration decomposition notion, that is relative to a local configuration.

Definition 15 (G, (Ki)i,K, (lk
j)j) is a local configuration decomposition of Σ = ` · α · π · γ ·H · S if and only if:

• G, (Ki)i is a heap decomposition of H · S and K ∈ (Ki)i
• dom(α) ⊆ dom(G) ∪ dom(K)
• (K, (lkj)j) is a filter history of α
• ∀i ∈ π,∃pλ, (pλ 7→ i) ∈ G
• ∀` ∈ γ, ` ∈ dom(G)
• ` ∈ dom(G)

Finally we use the local configuration decomposition notion to define what is a configuration decomposition.

Definition 16 Let Ω = φ1 :: · · · :: φn and Ξ = ψ1 :: · · · :: ψm. Then (G, (Ki, (lk
i,j)j)i≤n+m) is a configuration

decomposition of Ω · Ξ ·H · S if and only if:
• G, (Ki)i is a heap decomposition of H · S.
• for all i ≤ n, if φi ∈ {〈`, s, π, γ, α〉, 〈`, s, π, γ, α〉} then (G, (Kj)j ,Ki, (lk

i,j)j) is a heap decomposition history of
` · α · π · γ ·H · S with local heap Ki.

• for all n + 1 ≤ i ≤ m + n, if ψi = ⟪`, `′, π, γ, α⟫ then (G, (Kj)j ,Ki, (lk
i,j)j) is a heap decomposition history of

` · α · π · γ ·H · S with local heap Ki.

D. Well-Formedness

First we are going to make some assumptions on the program P , which are guaranteed by the Java type system: we
assume that the exception table built by the compiler only contain entries for exception class, and that the compiler guarantee
type soundness for the thread and exception rules.
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Assumption 1 (Exception Table Correction) If ExcptTable(c,m, pc, c′) is defined (i.e is equal to some pc′ or to ⊥)
then c′ ≤ Throwable.

Assumption 2 (Type Soundness Guarrantee)
• If Σ,throw re ⇓ Σ′ and H(ΣJreK) = {|c′; (f 7→ v)∗|} then c′ ≤ Throwable.
• If Σ, st ⇓ Σ′ where st ∈ {start-thread rt,interrupt rt,join rt} and H(ΣJrtK) = {|c′; (f 7→ v)∗|} then
c′ ≤ Thread.

We are going to need some well-formedness properties in the proof, that are preserved by the local configuration and
configuration reductions.

Definition 17 A local configuration Σ = ` · α · π · γ ·H · S is well-formed if and only if, whenever α = L1 :: . . . :: Ln or
α = AbNormal(L1 :: . . . :: Ln), we have:
• For all i, Li = waiting(_, _) implies that i = 1 and α = AbNormal(L1 :: . . . :: Ln).
• If L1 = waiting(`o, _) then L2 = 〈c,m, pc · _ · st∗ · _〉 with stpc = wait ri and `o = ΣJriK.
• For all i ≤ n, if Li = 〈c,m, pc · v∗ · st∗ ·R〉 and R(r) = ` then ` ∈ dom(H).
• For all ` ∈ γ, if H(`) = {|c′; _|} then c′ ≤ Thread.
• Either n ∈ {0, 1}, or n ≥ 2 and for each i ∈ [2, n], either of the following conditions hold true:

– Li = 〈c′,m′, pc′ · v′∗ · st ′∗ ·R′〉 and Li−1 = 〈c,m, pc · _ · st∗ ·R〉 with stpc = invoke ro m′ r1, . . . , rn,
lookup(typeH(R(ro)),m

′) = (c′, st ′∗), sign(c′,m′) = τ1, . . . , τn
loc−−→ τ and v′∗ = (R(rk))k≤n

– Li = 〈c′,m′, pc′ · v′∗ · st ′∗ ·R′〉 and Li−1 = 〈c,m, pc · _ · st∗ ·R〉 with stpc = sinvoke c′ m′ r1, . . . , rn,
lookup(c′,m′) = (c′, st ′∗), sign(c′,m′) = τ1, . . . , τn

loc−−→ τ and v′∗ = (R(rk))k≤n.

Lemma 3 (Preserving Local Well-formation) If Σ is well-formed and Σ ∗ Σ′, then Σ′ is well-formed.

Proof: By induction on the length of the reduction sequence and a case analysis on the last rule applied.

Definition 18 A heap H is well-typed if and only if, whenever H(`) = {|c; (fi 7→ vi)
i≤n|}, for all i ∈ [1, n] we have

typeH(vi) ≤ τi, where τi is the declared type of field fi for an object of type c according to the underlying program.

Assumption 3 (Java Type Soundness)
If ` · α · π · γ ·H · S  `′ · α′ · π′ · γ′ ·H ′ · S′, then for any value v we have typeH′(v) ≤ typeH(v). Moreover, if H is
well-typed, then also H ′ is well-typed.

Definition 19 A configuration Ψ = Ω · Ξ ·H · S is well-formed if and only if:
• whenever Ω = Ω0 :: ϕ :: Ω1 with ϕ ∈ {〈`, s, π, γ, α〉, 〈`, s, π, γ, α〉}, we have

– H(`) = {|c; (f 7→ v)∗|} for some activity class c and ` = pc for some pointer p
– Σ = ` · α · π · γ ·H · S is a well-formed local configuration

• whenever ⟪`, `′, π, γ, α⟫ ∈ Ξ , we have
– H(`) = {|c; (f 7→ v)∗|} for some activity class c and ` = pc for some pointer p
– H(`′) = {|c′; (f ′ 7→ v′)∗|} for some thread class c′

– Σ = ` · α · π · γ ·H · S is a well-formed local configuration
• H is a well-typed heap.

Lemma 4 (Preserving Well-formation) If Ψ is well-formed and Ψ⇒∗ Ψ′, then Ψ′ is well-formed.

Proof: By induction on the length of the reduction sequence and a case analysis on the last rule applied, using
Lemma ?? and Assumption ?? to deal with case (A-ACTIVE).
From now on, we tacitly focus only on well-formed configurations. All the formal results only apply to them: notice that
well-formed configurations always reduce to well-formed configurations by Lemma ??.

E. Representation Functions

From now on, we will consider only ground abstract values, and we will identify these values with their evaluation in
the abstract domain D̂.

We are now ready to define the representation functions that we will use in the proof. A representation function is a
(possibly parametrized) function that takes as input a concrete value and returns an abstraction of this value. The final



32

goal of this section is to define the representation function βCnf(Ψ) that takes as input a configuration Ψ and returns a set
of sets of abstract facts, where each set of abstract facts X in βCnf(Ψ) is an abstraction of Ψ for a given configuration
decomposition.

1) Basic Representation Functions: First we presuppose the existence of a representation function βPrim which associates
to each primitive value prim a corresponding abstract value {p̂rim}. We then define the following representation function,
that abstracts a filter lk into an abstract filter k̂, where the k̂ is the abstract filters that maps a program point pp to 1 iff
there exists a locations ` annotated with pp (i.e. ` = ppp) such that lk(`) = 1.

βFilter(lk) =

(
pp 7→

{
1 if ∃ppp, lk(ppp) = 1

0 otherwise

)∗
We then define the flow-sensitive and flow-insensitive location and value representation functions. The flow-sensitive

representation functions are going to be used when the analysis is flow-sensitive (for example one registers), and the
flow-insensitive representation functions are going to be used when the analysis is not flow-sensitive (for example on the
static heap).

flow-sensitive abstraction flow-insensitive abstraction

lo
ca

tio
n

βLoc(pλ,Ka, (lk
j)j) =

{
FS(λ) if λ = pp ∧ ppp = Γ∞(Ka, (lk

j)j)(pp)

NFS(λ) otherwise
βLab(pλ) = λ

va
lu

e

βLocVal(v,Ka, (lk
j)j) =

{
βPrim(v) if v = prim

βLoc(v,Ka, (lk
j)j) if v = `

βVal(v) =

{
βPrim(v) if v = prim

NFS(βLab(v)) if v = `

We typically omit brackets around singleton abstract values, and we will write βLocVal(v,Ka) instead of the more verbose
βLocVal(v,Ka, ε) when the filter list is empty.

Remark 4 Recall that by definition, only locations annotated with program points can be abstracted as flow-sensitive
abstract location. In particular activity object and their intents are always flow-insensitive.

With these representation functions, we can define the flow-sensitive representation function βLocBlk for local blocks, and
the flow-insensitive representation function βBlk for blocks.

βLocBlk(l,Ka) =


{|c; (f 7→ v̂)∗|} if l = {|c; (f 7→ v)∗|} and ∀i : βLocVal(vi,Ka) = v̂i

{|@c; v̂|} if l = {|@c; (f 7→ v)∗|} and v̂ = ti βLocVal(vi,Ka)

τ [v̂] if l = τ [v∗] and v̂ = ti βLocVal(vi,Ka)

⊥ if l = ⊥

βBlk(b) =


{|c; (f 7→ v̂)∗|} if b = {|c; (f 7→ v)∗|} and ∀i : βVal(vi) = v̂i

{|@c; v̂|} if b = {|@c; (f 7→ v)∗|} and v̂ = ti βVal(vi)

τ [v̂] if b = τ [v∗] and v̂ = ti βVal(vi)

2) Advanced Representation Functions: We define the representation function βLHeap(Ka) abstracting a local heap into
an abstract flow-sensitive heap as follows:

βLHeap(Ka) = {(pp 7→ βLocBlk (Ka(ppp),Ka)) | ppp ∈ dom(Ka)}

We have three representation functions used to abstract a local state L taken from the call-stack α of a local configuration
Σ, where ` is the pointer to the activity or thread object and Ka, (lk

n)n is a filter history of Σ:
• If a local state L is not the top-most local state in its call-stack then we use β`LstInv(L, n0, c

′,Ka, (lk
n)n) where n0 is

the position is the call-stack and c′ is the class of the object that L invoked a method upon.

β`LstInv(〈pp · u∗ · st∗ ·R〉, n0, c
′,Ka, (lk

n)n) =
{
Invc

′

pp((λ̂t, û
∗); v̂∗; k̂) | k̂ = βFilter(lk

n0)

∧ ∀j : ûj = βLocVal(uj ,Ka, (lk
n)n≤n0) ∧ λ̂t = βVal(`) ∧ ∀k : v̂k = βLocVal(R(rk),Ka, (lk

n)n<n0)
}

• If L is the top-most local state, and α is not abnormal, then we use β`Lst(L,Ka, (lk
n)n).

β`Lst(〈pp · u∗ · st∗ ·R〉,Ka, (lk
n)n) =

{
LStatepp((λ̂t, û

∗); v̂∗; ĥ; k̂) | k̂ = βFilter(lk
1)

∧ ∀j : ûj = βLocVal(uj ,Ka, (lk
n)n≤1) ∧ λ̂t = βVal(`) ∧ ∀k : v̂k = βLocVal(R(rk),Ka, (lk

n)n<1) ∧ ĥ = βLHeap(Ka)
}



33

• If L is the top-most local state, and α is abnormal, then we use β`ALst(〈pp · u∗ · st∗ ·R〉,Ka, (lk
n)n).

β`ALst(〈pp · u∗ · st∗ ·R〉,Ka, (lk
n)n) =

{
AStatepp((λ̂t, û

∗); v̂∗; ĥ; k̂) | k̂ = βFilter(lk
1)

∧ ∀j : ûj = βLocVal(uj ,Ka, (lk
n)n≤1) ∧ λ̂t = βVal(`) ∧ ∀k : v̂k = βLocVal(R(rk),Ka, (lk

n)n<1) ∧ ĥ = βLHeap(Ka)
}

Using these, we can define how the call-stack α is abstracted. For all i ≤ n, let Li = 〈ci,mi, pci · _ · _ · _〉. If
α = L1 :: · · · :: Ln and n ≥ 1 then:

β`Call(waiting(_, _) :: α,Ka, (lk
n)n) = β`Call(α,Ka, (lk

n)n)

= β`Lst(L1,Ka, (lk
n)n) ∪

⋃
i∈[2,n]

β`LstInv(Li, i, ci−1,Ka, (lk
n)n)

β`Call(AbNormal(α),Ka, (lk
n)n) = β`ALst(L1,Ka, (lk

n)n) ∪
⋃

i∈[2,n]

β`LstInv(Li, i, ci−1,Ka, (lk
n)n)

β`Call(ε,Ka, (lk
n)n) = β`Call(AbNormal(ε),Ka, (lk

n)n) = ∅

We can now define the following representation functions:

βGHeap(H) =
{
H(λ, b̂) | H(`′) = b ∧ λ = βLab(`′) ∧ b̂ = βBlk(b) ∧ `′ ∈ dom(G)

}
βStat(S) = {S(c, f, v̂) | S = S′, c.f 7→ v ∧ v̂ = βVal(v)}
β`Pact(π) =

{
Ic(b̂) | c = βLab(`) ∧ π = π0 :: i :: π1 ∧ b̂ = βBlk(i)

}
βGPthr(γ) =

{
T(λ, b̂) | γ = γ0 :: ` :: γ1 ∧ λ = βLab(`) ∧ (` 7→ b) ∈ G ∧ b̂ = βBlk(b)

}
βGFrm(〈`, s, π, γ, α〉,Ka, (lk

j)j) = βFrm(〈`, s, π, γ, α〉,Ka, (lk
j)j)

= βFrm(⟪`, `′, π, γ, α⟫,Ka, (lk
j)j)

= β`Call(α,Ka, (lk
j)j) ∪ β`Pact(π) ∪ βGPthr(γ)

Let Ω = ϕ1 :: . . . :: ϕn and Ξ = ψ1 :: . . . :: ψm. We then define the representation function βGStk abstracting the activity
stack and the thread pool as follows:

βGStk(Ω,Ξ, (Ki, (lk
i,j)j)i) =

 ⋃
i∈[1,n]

βGFrm(ϕi,Ki, (lk
i,j)j)

 ∪
 ⋃
l∈[1,m]

βGFrm(ψl,Kn+l, (lk
n+l,j)j)


The representation function βLcnf abstracts a local configuration Σ into a set of sets of abstract facts, one for each local

configuration decomposition of Σ:

βLcnf(` · α · π · γ ·H · S) =
{
β`Call(α,Ka, (lk

j)j) ∪ β`Pact(π) ∪ βGPthr(γ) ∪ βGHeap(H) ∪ βStat(S)

| (G, (Ki)i,Ka, (lk
j)j) is a local configuration decomposition of ` · α · π · γ ·H · S

}
The representation function βCnf abstracts a configuration Ψ into a set of sets of abstract facts, one for each configuration

decomposition of Ψ:

βCnf(Ω · Ξ ·H · S) =
{
βGStk(Ω, (Ki, (lk

i,j)j)i) ∪ βGHeap(H) ∪ βStat(S)

| (G, (Ki, (lk
i,j)j)i) is a configuration decomposition of Ω · Ξ ·H · S

}
Remark 5 The predicates Invc

′

pp((λ̂t, û
∗); v̂∗; k̂) are used to abstract local states of function which have invoked some

other method and are waiting for it to return. There are two differences with LStatepp((λ̂t, û
∗); v̂∗; ĥ; k̂): the first one is

that we drop the local heap, which is no longer needed since it will be replaced by the callee’s local heap when it will
return. The second difference is that we have extra information about the class c′ implementing the invoked method.

Also observe that this invoke predicate does not appear in any rules, and that it is only used in the proof. Therefore it
can be ignored in an implementation.
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F. Pre-Orders

We will now define several pre-orders and relations used to compare abstract elements. Some abstract syntactic domains,
such as abstract values and abstract memory blocks, have two different pre-orders used to compare them, that we distinguish
by decorating one with a nfs superscript. The pre-order with the nfs superscript is a flow-insensitive pre-order.

1) Abstract Values Pre-Orders: We define the pre-order vLoc on abstract location by:

λ̂vLoc λ̂
′ iff


λ̂ = NFS(pp) ∧ λ̂′ = FS(pp)

λ̂ = FS(pp) ∧ λ̂′ = NFS(pp)

λ̂ = λ̂′

Based on this, we define the pre-order vnfs on abstract values to the reflexive and transitive closure of v ∪ vLoc. We
then build the pre-orders vnfs

Seq and vSeq on sequences of abstract values by having û∗vnfs
Seq v̂

∗ (resp. û∗vSeq v̂
∗) iff û∗ and

v̂∗ have the same length and ∀i : ûivnfs v̂i (resp. ∀i : ûiv v̂i). We then define a pre-order vnfs
Blk on abstract memory blocks

as follows:
• if b̂ = {|c; (f 7→ û)∗|} and b̂′ = {|c; (f 7→ v̂)∗|} and û∗ vnfs

Seq v̂
∗, then b̂vnfs

Blk b̂
′

• if b̂ = {|@c; û|} and b̂′ = {|@c; v̂|} and ûvnfs v̂, then b̂vnfs
Blk b̂

′

• if b̂ = τ [û] and b̂′ = τ [v̂] and ûvnfs v̂, then b̂vnfs
Blk b̂

′

We also define the pre-order vBlk on abstract memory blocks, which is the the flow-sensitive counterpart of vnfs
Blk.

• if b̂ = {|c; (f 7→ û)∗|} and b̂′ = {|c; (f 7→ v̂)∗|} and û∗ vSeq v̂
∗, then b̂vBlk b̂

′

• if b̂ = {|@c; û|} and b̂′ = {|@c; v̂|} and ûv v̂, then b̂vBlk b̂
′

• if b̂ = τ [û] and b̂′ = τ [v̂] and ûv v̂, then b̂vBlk b̂
′

Finally we define the relation vFilter on abstract filters to be the equality order. Next, we state some simple properties
satisfied by these pre-orders.

Proposition 3 vnfs
Blk is coarser than vBlk, and vnfs is coarser than v.

Proposition 4 If û 6= ⊥ and ûv v̂ and ûv ŵ then v̂ u ŵ 6= ⊥

Proof: Since (D̂,v,t,u,>,⊥) is a lattice we know that ûv v̂ u ŵ. Moreover û 6= ⊥, therefore v̂ u û 6= ⊥.

Proposition 5 For any abstract memory blocks b̂, b̂′, for any abstract values û, v̂ and for any field f we have

b̂vnfs
Blk b̂

′ ∧ ûvnfs v̂ =⇒ b̂[f 7→ û]vnfs
Blk b̂

′[f 7→ v̂]

b̂vBlk b̂
′ ∧ ûv v̂ =⇒ b̂[f 7→ û]vBlk b̂

′[f 7→ v̂]

2) Facts Pre-Orders: For all register ro, class c′′, abstract heap ĥ and sequence of abstract values v̂∗ we define the
formula:

Call∆ro,c′′,m′(v̂
∗; ĥ) = ∃pp′, c′,

(
(NFS(pp′)v v̂o ∧ H(pp′, {|c′; _|}) ∈ ∆) ∨

(
FS(pp′)v v̂o ∧ ĥ(pp′) = {|c′; _|}

))
∧ c′ ≤ c′′ ∧ c′′ ∈ l̂ookup(m′)

Intuitively this states that element o of the abstract registers v̂∗ over-approximates an abstract location to an abstract object
{|c′; _|} in ĥ or ∆, such abstract virtual dispatch resolution on c′,m′ return c′′. We are now ready to define more complex
relation between abstract facts, using the pre-orders defined in the previous subsection. Let ∆,∆′ be two finite sets of
facts. We define the relations vR, vA and v∆′

Inv as follows:
• LStatec,m,pc((λ̂1

t , û
∗
call); û

∗; ĥ; k̂)vR LStatec,m,pc((λ̂2
t , v̂
∗
call); v̂

∗; ĥ′; k̂′) iff
– λ̂1

t = λ̂2
t and û∗call vSeq v̂

∗
call

– û∗ vSeq v̂
∗

– k̂ vFilter k̂
′

– ∀pp, ĥ(pp) 6= ⊥ =⇒ ĥ(pp)vBlk ĥ
′(pp)

• AStatec,m,pc((λ̂1
t , û
∗
call); û

∗; ĥ; k̂)vA AStatec,m,pc((λ̂2
t , v̂
∗
call); v̂

∗; ĥ′; k̂′) iff :

LStatec,m,pc((λ̂1
t , û
∗
call); û

∗; ĥ; k̂)vR LStatec,m,pc((λ̂2
t , v̂
∗
call); v̂

∗; ĥ′; k̂′)

• Invc
′′

c,m,pc((λ̂1
t , û
∗
call); û

∗; k̂)v∆
Inv LStatec,m,pc((λ̂2

t , v̂
∗
call); v̂

∗; ĥ′; k̂′) iff:

– λ̂1
t = λ̂2

t and û∗call vSeq v̂
∗
call
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– û∗ vSeq v̂
∗

– k̂ vFilter k̂
′

– lookup(c,m) = (_, st∗), stpc = invoke ro m′ _ and Call∆ro,c′′,m′(v̂
′∗; ĥ′)

Finally, we define the pre-order <: by having ∆ <: ∆′ (where ∆,∆′ are two finite sets of facts) if and only if:
• ∀LStatec,m,pc((λ̂1

t , û
∗
call); û

∗; ĥ; k̂) ∈ ∆, ∃LStatec,m,pc((λ̂2
t , v̂
∗
call); v̂

∗; ĥ′; k̂′) ∈ ∆′ s.t.

LStatec,m,pc((λ̂1
t , û
∗
call); û

∗; ĥ; k̂)vR LStatec,m,pc((λ̂2
t , v̂
∗
call); v̂

∗; ĥ′; k̂′)

• ∀AStatec,m,pc((λ̂1
t , û
∗
call); û

∗; ĥ; k̂) ∈ ∆, ∃AStatec,m,pc((λ̂2
t , v̂
∗
call); v̂

∗; ĥ′; k̂′) ∈ ∆′ s.t.

AStatec,m,pc((λ̂1
t , û
∗
call); û

∗; ĥ; k̂)vA AStatec,m,pc((λ̂2
t , v̂
∗
call); v̂

∗; ĥ′; k̂′)

• ∀Invc
′′

c,m,pc((λ̂1
t , û
∗
call); û

∗; k̂) ∈ ∆, ∃LStatec,m,pc((λ̂2
t , v̂
∗
call); v̂

∗; ĥ′; k̂′) ∈ ∆′ s.t.

Invc
′′

c,m,pc((λ̂1
t , û
∗
call); û

∗; k̂)v∆′

Inv LStatec,m,pc((λ̂2
t , v̂
∗
call); v̂

∗; ĥ′; k̂′)

• ∀H(λ, b̂) ∈ ∆, ∃H(λ, b̂′) ∈ ∆′ such that b̂vnfs
Blk b̂

′

• ∀S(c, f, û) ∈ ∆, ∃S(c, f, v̂) ∈ ∆′ such that ûvnfs v̂
• ∀Ic(b̂) ∈ ∆, ∃Ic(b̂′) ∈ ∆′ such that b̂vnfs

Blk b̂
′

• ∀T(λ, b̂) ∈ ∆, ∃T(λ, b̂′) ∈ ∆′ such that b̂vnfs
Blk b̂

′

G. Preliminary Lemmas

1) Pre-orders:

Lemma 5 For all set of facts ∆ and ∆′, if ∆ ⊆ ∆′ then

Call∆ro,c′′,m′(v̂
∗; ĥ) =⇒ Call∆

′

ro,c′′,m′(v̂
∗; ĥ)

As a direct corollary, v∆′

Inv is coarser than v∆
Inv.

Lemma 6 If ∆ ⊆ ∆′, and ∆′ <: ∆′′ then ∆ <: ∆′′.

Lemma 7 If ∆1 <: ∆2 and ∆3 <: ∆4, then ∆1 ∪∆3 <: ∆2 ∪∆4.

Lemma 8 If ∆ <: ∆′ and ∆′ <: ∆′′, then ∆ <: ∆′′.

Proof: All cases are very easy, except for the following one:
Let Invc

′′

c,m,pc((λ̂t, û
∗
call); v̂

∗; k̂) ∈ ∆, LStatec,m,pc((λ̂′t, û
′∗
call); v̂

′∗; ĥ′; k̂′) ∈ ∆′, LStatec,m,pc((λ̂′′t , û
′′∗
call); v̂

′′∗; ĥ′′; k̂′′) ∈
∆′′. Assume that:

Invc
′′

c,m,pc((λ̂t, û
∗
call); v̂

∗; k̂)v∆′

Inv LStatec,m,pc((λ̂′t, û
′∗
call); v̂

′∗; ĥ′; k̂′)vR LStatec,m,pc((λ̂′′t , û
′′∗
call); v̂

′′∗; ĥ′′; k̂′′)

We want to prove that:

Invc
′′

c,m,pc((λ̂t, û
∗
call); v̂

∗; k̂)v∆′′

Inv LStatec,m,pc((λ̂′′t , û
′′∗
call); v̂

′′∗; ĥ′′; k̂′′)

To this end we need to prove that the following four conditions holds:
• λ̂t, û

∗
call vSeq λ̂

′′
t , û
′′∗
call: follows directly from transitivity of vSeq

• v̂∗ vSeq v̂
′′∗: follows directly from transitivity of vSeq

• k̂ vFilter k̂
′′ : follows directly from transitivity of vFilter

• lookup(c,m) = (_, st∗), stpc = invoke ro m′ _ and Call∆
′′

ro,c′′,m′(v̂
′′∗; ĥ′′):

The fact that lookup(c,m) = (_, st∗), stpc = invoke ro m′ _ is easy. It remains to check that Call∆
′′

ro,c′′,m′(v̂
′′∗; ĥ′′).

First we know that Call∆
′

ro,c′′,m′(v̂
′∗; ĥ′) holds, therefore there exist pp′ and c′ such that:

( A︷ ︸︸ ︷(
NFS(pp′)v v̂′ro ∧ H(pp′, {|c′; _|}) ∈ ∆′

)
∨

B︷ ︸︸ ︷(
FS(pp′)v v̂′ro ∧ ĥ

′(pp′) = {|c′; _|}
))
∧ c′ ≤ c′′ ∧ c′′ ∈ l̂ookup(m′)

– Assume that A holds: we have H(pp′, {|c′; _|}) ∈ ∆′ and NFS(pp′) v v̂′ro . Then since ∆′ <: ∆′′ we know that
there exists H(pp′, {|c′; _|}) ∈ ∆′′. Moreover since v̂′∗ vSeq v̂

′′∗ and NFS(pp′)v v̂′ro we know that NFS(pp′)v v̂′′ro .
Therefore Call∆

′′

ro,c′′,m′(v̂
′′∗; ĥ′′) holds.
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– Assume that B holds: we have FS(pp′) v v̂′ro and ĥ′(pp′) = {|c′; _|}. First, since v̂′∗ vSeq v̂
′′∗ and FS(pp′) v v̂′ro

we know that FS(pp′) v v̂′′ro . Moreover ĥ′(pp′) = {|c′; _|} and ĥ′(pp′) 6= ⊥ =⇒ ĥ′(pp′) vBlk ĥ
′′(pp′), hence

ĥ′′(pp′) = {|c′; _|}. Therefore Call∆
′′

ro,c′′,m′(v̂
′′∗; ĥ′′) holds.

2) Representation Function:

Proposition 6 For all filter history K, (lkj)j we have:
• For any block b, βLocBlk(b,K)vnfs

Blk βBlk(b) and βBlk(b)vnfs
Blk βLocBlk(b,K).

• For any value v, βLocVal(v,K, (lk
j)j)vnfs βVal(v) and βVal(v)vnfs βLocVal(v,K, (lk

j)j).

Proof: This is following from the fact that the pre-orders vnfs
Blk and vnfs ignore the flow-sensitive and flow-insensitive

annotations of the abstract labels.

Assumption 4 (Soundness of the Abstract Operations) 4̂, �̂ and ⊕̂ are monotonous operators, and soundly over-
approximate the concrete operators 4,� and ⊕: for all local heap K, we have:
• u4 v implies that βLocVal(u,K) 4̂ βLocVal(v,K)
• βLocVal(�v,K)v �̂βLocVal(v,K)
• βLocVal(u⊕ v,K)v βLocVal(u,K) ⊕̂ βLocVal(v,K)

This carry over to all the representation functions βLocVal(·,K, (lk
i)i) (with order v) and βVal(·) (with order vnfs):

Proposition 7 For all concrete values u and v, and for all filter history K, (lki)i we have:
• u4 v implies that βLocVal(u,K, (lk

i)i) 4̂ βLocVal(v,K, (lk
i)i) and that βVal(u) 4̂ βVal(v)

• βLocVal(�v,K, (lk
i)i)v �̂βLocVal(v,K, (lk

i)i) and βVal(�v)vnfs �̂βVal(v)
• βLocVal(u⊕ v,K, (lk

i)i)v βLocVal(u,K, (lk
i)i) ⊕̂ βLocVal(v,K, (lk

i)i) and βVal(u⊕ v)vnfs βVal(u) ⊕̂ βVal(v)

Proof: Observe that for all filter history K, (lki)i, we have that for all concrete value u:

βLocVal(u,K, (lk
i)i) = βLocVal

(
u,
(
pp 7→ Γ∞(Ka, (lk

j)j)(pp)
)∗)

This together with Assumption ?? shows the first point of each item bullet.
The second point of each item bullet follows from the fact that if vnfs is coarser than v, and the monotonicity of the

abstract operators. We are going to detail the proof of the second item bullet (the other cases work exactly in the same
way). Let K be an arbitrary local heap:

βLocVal(�v,K)v �̂βLocVal(v,K) by Assumption ??
βLocVal(�v,K)vnfs �̂βLocVal(v,K) by Proposition ??
βVal(�v)vnfs βLocVal(�v,K)vnfs �̂βLocVal(v,K) by Proposition ??

By Proposition ?? we know that βLocVal(v,K)vnfs βVal(v), therefore by monotonicity of �̂ we get that �̂βLocVal(v,K)vnfs

�̂βVal(v). This concludes the �̂ case by showing that:

βVal(�v)vnfs βLocVal(�v,K)vnfs �̂βLocVal(v,K)vnfs �̂βVal(v)

Assumption 5 (Overriding) If lookup(c,m) = (c′, st∗), then c ≤ c′.

In the next results, let ∆ ` ∆′ whenever ∆ ` f for each f ∈ ∆′.

Proposition 8 t̂ is an exact abstraction of tloc: for all filters lk1 and lk2 we have βFilter(lk
1 tloc lk2) = βFilter(lk

1) t̂
βFilter(lk

2).

Proposition 9 For all abstract filter k̂, for all abstract values û and v̂ we have:
• if ûv v̂ then lift(û; k̂)v lift(v̂; k̂).
• if ûvLoc v̂ then lift(û; k̂)vLoc lift(v̂; k̂).
• if ûvnfs v̂ then lift(û; k̂)vnfs lift(v̂; k̂).
• for all abstract heap ĥ and ĥ′, if ∀pp, ĥ(pp)vBlk ĥ

′(pp) then:

∀pp, hlift(ĥ; k̂)(pp)vBlk hlift(ĥ
′; k̂)(pp)
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Proof: The first point is an assumption made on the lift(·; ·) function, and the second point is trivial. Observe that for
all û, v̂, if ûvLoc v̂ then lift(û; k̂)vLoc lift(v̂; k̂). Since vnfs is the transitive and reflexive closure of v and vLoc, this third
point is a direct consequence of the first and second points. The fourth point is an easy consequence of hlift(·; ·) definition
and of the first point.

Proposition 10 ûvnfs v̂ implies that lift(û; 1∗)v lift(v̂; 1∗).

Proof: By definition of vnfs, we know that there exists (v̂i)i≤n, (v̂
′
i)i≤n such that:

û = v̂1 vLoc v̂
′
1 v v̂2 vLoc v̂

′
2 . . . v̂

′
n−1 v v̂n vLoc v̂

′
n = v̂

By Proposition ??.2, we know that for all i ≤ n, v̂ivLoc v̂
′
i implies that lift(v̂i; 1∗)vLoc lift(v̂

′
i; 1∗). Moreover lift(v̂i; 1∗)vLoc

lift(v̂′i; 1∗) implies that there exists λ such that lift(v̂i; 1∗) = NFS(λ) and lift(v̂′i; 1∗) = NFS(λ). Therefore lift(v̂i; 1∗) v
lift(v̂′i; 1∗). By Proposition ??.1, for all i < n, v̂′i v v̂i+1 implies that lift(v̂′i; 1∗)v lift(v̂i+1; 1∗), hence we have:

lift(û; 1∗) = lift(v̂1; 1∗)v lift(v̂′1; 1∗)v lift(v̂2; 1∗) . . . lift(v̂n; 1∗)v lift(v̂′n; 1∗) = lift(v̂; 1∗)

Which concludes this proof.

Proposition 11 If for some i we have :

Γi((lkj)j ,Ka) = Γi+k((lk′j)j ,K
′
a) and Γi+1((lkj)j ,Ka) = Γi+k+1((lk′j)j ,K

′
a)

then for all local state L and class c′ we have:

β`LstInv(L, i, c
′,Ka, (lk

n)n) = β`LstInv(L, i+ k, c′,K ′a, (lk
′n)n)

Proposition 12 Let Σ = ` · α · π · γ · H · S and let ΣJrhsK = `, then for any X ∈ βLcnf(Σ) with local configuration
decomposition (G, (Ki)i,K, (lk

j)j), v ∈ dom(H) implies that v ∈ dom(K).

Proof: By a case analysis on the structure of rhs , and using the fact that we have a local configuration decomposition.

Proposition 13 Let (G, (Ki)i,K, (lk
j)j) and (G′, (K ′i)i,K

′, (lk′j)j) be two local configuration decomposition of Ωi such
that K = K ′ and ∀j, lkj = lk′j . Then we have:

βFrm(Ωi,K, (lk
′j)j) = βFrm(Ωi,K, (lk

j)j)

3) Technical lemmas:

Lemma 9 (Right-hand Sides) Let Σ = ` ·α · π · γ ·H ·S with α = 〈pp · u∗ · st∗ ·R〉 :: α0, let ΣJrhsK = v, X ∈ βLcnf(Σ)
with local configuration decomposition (G, (Ki)i,K, (lk

j)j), let ∆ :> X .
Let LStatec,m,pc((λ̂′t, û

′∗); v̂′∗; ĥ′; k̂′) ∈ ∆ be such that :

β`Lst(〈c,m, pc · u∗ · st∗ ·R〉,K, (lkj)j)vR LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′)

Then there exists v̂ such that βLocVal(v,K)v v̂ and ∆ ∪ 〈〈rhs〉〉pp ` RHSpp(v̂).
Moreover if rhs is a register ri then we can take v̂ = v̂′i.

Proof: By a case analysis on the structure of rhs . We are going to detail the object field look-up case, which is the
more complicated one. Let LStatec,m,pc((λ̂t, û

∗); v̂∗; ĥ; k̂) be such that:

β`Lst(〈c,m, pc · u∗ · st∗ ·R〉,K, (lkj)j) = LStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂) (8)

Let ΣJriK = ` = pλ. Since G, (Ki)i is a heap decomposition of H we know that ` ∈ dom(G) or ` ∈
⋃
i dom(Ki).

Moreover by Proposition ??, ` ∈
⋃
i dom(Ki) implies that ` ∈ dom(K). Therefore we are in one of the two following

cases:
• ` ∈ dom(G): from Equation ?? we get that v̂i = βLocVal(`,K) = NFS(λ). Moreover since:

β`Lst(〈c,m, pc · u∗ · st∗ ·R〉,K, (lkj)j)vR LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′)

we know that NFS(λ) = v̂i v v̂′i. We know that there exists o such that o = H(`) = {|c; (fj 7→ uj)
∗, f 7→ v|}. Since

∆ :> X , there exists H(λ, {|c; (fi 7→ ûi)
∗, f 7→ v̂f |}) ∈ ∆ such that βVal(v)vnfs v̂f . Let v̂ = lift(v̂f ; 1∗), then we have

∆ ∪ 〈〈rhs〉〉pp ` RHSpp(v̂) by applying the rule:

LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) ∧ NFS(λ)v v̂′i ∧ H(λ, {|c; (fi 7→ ûi)

∗, f 7→ v̂f |}) =⇒ RHSpp(lift(v̂f ; 1∗))
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which is in 〈〈ri.f〉〉pp . It remains to check that βLocVal(v,K) v v̂: if v is a primitive value then this is trivial. The
value v is stored in a field of an object referenced to by `, which is a flow-insensitive location and cannot contain
flow-sensitive locations. Therefore v cannot be a flow-sensitive location. If v is a flow-insensitive location p′λ′ then
βLocVal(v,K) = NFS(λ′), and βVal(v) = NFS(λ′). Moreover by Proposition ?? we know that βVal(v)vnfs v̂f implies
that lift(βVal(v); 1∗)vnfs lift(v̂f ; 1∗). Since lift(βVal(v); 1∗) = NFS(λ′) = βLocVal(v,K), we proved that βLocVal(v,K)vv̂.

• ` ∈ dom(K): from Equation ?? we get that v̂i = βLocVal(`,K) = FS(λ). Moreover since:

LStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂)vR LStatec,m,pc((λ̂′t, û

′∗); v̂′∗; ĥ′; k̂′) (9)

we know that FS(λ) = v̂iv v̂′i. We know that there exists o such that o = H(`) = {|c; (fj 7→ uj)
∗, f 7→ v|}, hence by

definition of βLHeap we get that ĥ(λ) = {|c; (fi 7→ ûi)
∗, f 7→ v̂f |} where βLocVal(v,K)vv̂f . Moreover from Equation ??

and the fact that ĥ(λ) 6= ⊥ we get that ĥ(λ)vBlk ĥ
′(λ), which in turns implies that ĥ′(λ) = {|c; (fi 7→ û′′i )∗, f 7→ v̂′f |}

where v̂f v v̂′f . By transitivity of v we have βLocVal(v,K)v v̂′f .
It just remains to show that ∆ ∪ 〈〈rhs〉〉pp ` RHSpp(v̂

′
f ) by applying the following rule, which is in 〈〈ri.f〉〉pp :

LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) ∧ FS(λ)v v̂′i ∧ ĥ′(λ) = {|c; (fi 7→ û′′i )∗, f 7→ v̂′f |} =⇒ RHSpp(v̂

′
f )

Lemma 10 (Reachability) For any abstract value û and abstract heap ĥ, there exists an abstract filter k̂a such that
` Reach(û; ĥ; k̂a) and k̂a is the indicator function of the set of reachable elements starting from û in the points-to graph
of ĥ.

Proof:
We define Reachnλ and Reachnv̂ as follows:
• Reachnv̂ =

⋃
FS(λ′)vv̂ Reach

n
λ′

• Reach0
λ = {λ}

• Reachn+1
λ = Reachnλ ∪

⋃
iReach

n
v̂i

if ĥ(λ) = {|c; (fi 7→ v̂i)i|}
• Reachn+1

λ = Reachnλ ∪Reachnv̂ if ĥ(λ) = τ [v̂]

• Reachn+1
λ = Reachnλ ∪Reachnv̂ if ĥ(λ) = {|@τ ; v̂|}

For all λ (resp. v̂), (Reachnλ)n≥0 (resp. (Reachnv̂ )n≥0) is an non-decreasing sequence, and the set Reachλ (resp. Reachv̂)
of reachable elements starting from λ (resp. v̂) in the points-to graph of ĥ is Reachλ =

⋃
n≥0Reach

n
λ (resp. Reachv̂ =⋃

n≥0Reach
n
v̂ ). Moreover since ĥ is finite, this limit is reached in a finite number of steps. Therefore there exists N such

that Reachλ =
⋃
n≤N Reach

n
λ and Reachv̂ =

⋃
n≤N Reach

n
v̂ .

We define Iλn to be the indicator function of Reachnλ, and I v̂n to be the indicator function of Reachnv̂ . We will see
Iλn and I v̂n as abstract filters. It is easy to show by induction over n that for all n ≥ 0, for all λ and for all v̂ we have
` Reach(FS(λ); ĥ; Iλn) and ` Reach(v̂; ĥ; Iλn) (observe that the second point uses the fact that there is a finite number of
λ). Therefore we have ` Reach(û; ĥ; I ûN ), where I ûN is the indicator function of ReachNû = Reachû.

Lemma 11 (Abstract Value Lifting) Let K and K ′ be two local heaps, u be a concrete value and S be a set of locations
such that dom(K ′)\dom(K) = S and u 6∈ S.

Let v̂ = βLocVal(u,K), lka = {(pλ 7→ 1) | pλ ∈ dom(K) ∧ ∃p′λ ∈ S} and k̂a = βFilter(lka). Then we have:

βLocVal(u,K
′) = lift(v̂; k̂a)

Proof: If u is a primitive value then this is trivial. Assume u = ` = pλ, then one of the following cases holds:
• ` ∈ dom(K ′) ∩ dom(K). Then we have:

βLoc(pλ,K
′) = FS(λ) = βLoc(pλ,K)

Moreover since S ⊆ dom(K ′), we know that ` 6∈ S. Assume that there exists a location p′λ ∈ S, then since
dom(K ′)\dom(K) = S we know that p′λ ∈ dom(K ′). Since p′λ ∈ dom(K ′) and p 6= p′, this implies that dom(K ′)
contains two locations with the same allocation point, which contradicts the fact that K ′ is a local heap. Therefore
there exists no p′ such that p′λ ∈ dom(K ′), which in turn implies that implies that k̂a(λ) = 0. Hence lift(v̂; k̂a) =
lift(FS(λ); k̂a) = FS(λ), which concludes this case.

• ` ∈ dom(K ′)\dom(K). Then since dom(K ′)\dom(K) = S we have ` ∈ S. Besides by hypothesis ` 6∈ S. Absurd.
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• ` ∈ dom(K)\dom(K ′). Therefore pλ 6∈ dom(K ′), and since K ′ is a local heap there exists p′ 6= p such that
p′λ ∈ dom(K ′). Moreover since K is a local heap we have p′λ 6∈ dom(K). Therefore p′λ ∈ S, which implies that
k̂a(λ) = 1. By consequence we have:

βLoc(pλ,K
′) = NFS(λ) = lift(FS(λ); k̂a) = lift(βLoc(pλ,K

′); k̂a) = lift(v̂; k̂a)

• ` 6∈ dom(K ′) ∪ dom(K). Then we trivially have:

βLoc(pλ,K
′) = NFS(λ) = lift(NFS(λ); k̂a) = lift(βLoc(pλ,K); k̂a) = lift(v̂; k̂a)

Lemma 12 (Abstract Local State Lifting) Let Σ = `·α·π·γ·H ·S with α = 〈pp·u∗·st∗·R〉 :: α0. Let (G, (Ki)i,K, (lk
j)j)

be a local configuration decomposition of Σ, and assume that:

β`rLst(〈c,m, pc · u∗ · st∗ ·R〉,K, (lkn)n) = LStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂)

Let K ′ be a local heap, and S a set of locations such that:
• dom(K ′)\dom(K) = S
• ∀pλ ∈ S,K ′(pλ) = ⊥ and ∀pλ 6∈ S,K ′(pλ) = K(pλ)
• S is fresh in Σ

Let lka = {(pλ 7→ 1) | pλ ∈ dom(K) ∧ ∃p′λ ∈ S} and k̂a = βFilter(lka). Then we have:
1) β`rLst(〈c,m, pc+1·u∗ ·st∗ ·R〉,K ′, (lkatf lk1) :: (lkn)n>1)) = LStatec,m,pc+1((λ̂t, û

∗); lift(v̂∗; k̂a); hlift(ĥ; k̂a); k̂a t̂k̂)
2) for all register rd, concrete value w, locations pλ′ and memory block b we have:

β`rLst(〈c,m, pc + 1 · u∗ · st∗ ·R[rd 7→ w]〉,K ′[pλ′ 7→ b], (lka tf lk1) :: (lkn)n>1))

= LStatec,m,pc+1((λ̂t, û
∗); lift(v̂∗; k̂a)[d 7→ βLocVal(w,K

′)]; hlift(ĥ; k̂a)[λ′ 7→ βLocBlk(b,K
′)]; k̂a t̂ k̂)

Proof: We are only going to prove 1), as 2) is a rather simple extension of 1). We want to show the four following
points:
• We know that dom(K ′)\S ⊆ dom(K). Moreover by definition of lka we know that S = {pλ | ∃p′λ, lka(p′λ) = 1}.

Moreover for all `, lk(`) = 1 implies that ` ∈ dom(K). Hence by Proposition ??.5 we have:

Γ2(K, (lkj)j≥1) = Γ2(K ′, (lka tloc lk1) :: (lkj)j≥2)

It is then easy to check that for all l ≤ |u∗|, we have βLocVal(ul,K
′, (lka tf lk1)) = βLocVal(ul,K, lk

1) = ûl.
• Let rk be a register of R. Since S is fresh in Σ, we know that R(rk) 6∈ S, therefore by Lemma ?? we get that
βLocVal(R(rk),K ′) = lift(v̂k; k̂a).

• Let pp be an allocation point. We want to show that there exists ppp ∈ dom(K ′) such that hlift(ĥ; k̂a)(pp) =
βLocBlk (K ′(ppp),K

′)). Since K ′ is a local heap, we know that there exists ` = ppp ∈ dom(K ′). One of the two
following cases holds:
– ` ∈ S. By hypothesis, we know that K ′(`) = ⊥. Moreover by definition of k̂a we know that k̂a(pp) = 1, therefore

we have:
βLocBlk (K ′(`),K ′) = βLocBlk (⊥,K ′) = ⊥ = hlift(ĥ; k̂a)(pp)

– ` 6∈ S. Then by hypothesis we know that K ′(`) = K(`). Assume that K(`) = {|c; (fi 7→ ui)i≤n|} (the array and
intent cases are similar). Then we have:

βLocBlk (K ′(`),K ′) = {|c; (fi 7→ βLocVal(ui,K
′))i≤n|}

Since S is fresh in Σ we know that for all i ≤ n, ui 6∈ S. Therefore by Lemma ??, for all i ≤ n, we have
βLocVal(ui,K

′))i≤n = lift(βLocVal(ui,K); k̂a). Moreover since ` ∈ dom(K ′)\S, we know that k̂a(λ) = 0. Therefore:

{|c; (fi 7→ βLocVal(ui,K
′))i≤n|} = {|c; (fi 7→ lift(βLocVal(ui,K); k̂a))i≤n|} = hlift(ĥ; k̂a)(λ)

• k̂a t̂ k̂ = βFilter(lka tf lk1): this is trivial.

We can now state the local preservation lemma, which shows that our abstraction soundly over-approximates the concrete
reduction  ∗ between local reduction.
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Lemma 13 (Local Preservation) If Σ  ∗ Σ′ under a given program P , then for any X ∈ βLcnf(Σ) with local
configuration decomposition (G, (Ki)i≤n,K, (lk

j)j), for any ∆ :> X there exists ∆′ and X ′ ∈ βLcnf(Σ
′) with local

configuration decomposition (G′, (K ′i)i≤n,K
′, (lk′j)j) such that ∀i,Ki 6= K =⇒ Ki = K ′i, ∆′ :> X ′ and (|P |)∪∆ ` ∆′.

The proof is postponed in Section ??.

H. Serialization

To state and prove the global soundness theorem, we are going to need some lemmas to handle heap serialization.
Basically these lemmas state that if you serialize only memory blocks that are abstracted in a flow-insensitive fashion,
then the serialized versions are still properly over-approximated. The serialization lemmas will be applicable in the global
soundness theorem proof because the concrete semantics use serialization for inter-components communications and because
our analysis always abstract shared memory blocks in a flow-insensitive fashion.

Lemma 14 The following statements hold:
• if Γ ` serHVal(v) = (v′, H ′,Γ′) then βVal(v) = βVal(v

′)
• if Γ ` serHBlk(b) = (b′, H ′,Γ′) then βBlk(b) = βBlk(b

′)

Proof: If v = prim , then v′ = prim and βVal(v) = βVal(v
′) = βPrim(prim). If v = pλ then v′ = p′λ for some pointer

p′ and βVal(v) = NFS(λ) = βVal(v
′). The second point is a direct consequence of the first one.

Let image(Γ) = {`′ | ∃`.(` 7→ `′) ∈ Γ}.

Lemma 15 If image(Γ) ∩ dom(H) = ∅ then :
• if Γ ` serHVal(v) = (v′, H ′,Γ′) then image(Γ′) ∩ dom(H) = ∅.
• if Γ ` serHBlk(b) = (b′, H ′,Γ′) then image(Γ′) ∩ dom(H) = ∅.

Proof: We prove the first two points by mutual induction on the proof derivation:
•

Γ ` serHVal(prim) = (prim, ·,Γ)
: by lemma’s hypothesis.

•
(pλ 7→ p′λ) ∈ Γ

Γ,` serHVal(pλ) = (p′λ, ·,Γ)
: idem.

•
pλ /∈ dom(Γ) p′λ fresh pointer Γ, pλ 7→ p′λ ` serHBlk(H(pλ)) = (b,H ′′,Γ′) H ′ = H ′′, p′λ 7→ b

Γ ` serHVal(pλ) = (p′λ, H
′,Γ′)

:

p′λ is fresh and image(Γ) ∩ dom(H) = ∅, therefore image(Γ, pλ 7→ p′λ) ∩ dom(H) = ∅. Hence by induction we
know that image(Γ′) ∩ dom(H) = ∅.

•
Γ0 = Γ ∀i ∈ [1, n] : Γi−1 ` serHVal(vi) = (ui, Hi,Γi) H ′ = H1, . . . ,Hn

Γ ` serHBlk({|c′; (fi 7→ vi)
i≤n|}) = ({|c′; (fi 7→ ui)

i≤n|}, H ′,Γn)
:

We do an induction over i ∈ [0, n] to prove that image(Γi) ∩ dom(H) = ∅: Γ0 = Γ hence by lemma’s hypothesis
image(Γ0) ∩ dom(H) = ∅. Now assume that image(Γi−1) ∩ dom(H) = ∅, then by outer induction hypothesis we
have image(Γi) ∩ dom(H) = ∅.

• Block serialization of arrays and intents works exactly like the object case.

Lemma 16 If image(Γ) ∩ dom(H) = ∅ then
• if Γ ` serHVal(u) = (u′, H ′,Γ′) then u 6∈ dom(H).
• if Γ ` serHBlk(b) = (b′, H ′,Γ′) then (_ 7→ b′) 6→ref H .

Proof: Simple proof by case analysis on the last (or two last) derivation rule(s) applied.

Lemma 17 Let G, (Ki)i be a heap decomposition of H . If ∆ :> βGHeap(H) and image(Γ) ∩ dom(H) = ∅ then:

• if Γ ` serHVal(v) = (v′, H ′,Γ′) and v ∈ dom(G) or v is a primitive value then ∆ :> βG∪H
′

Heap (H ′)

• if Γ ` serHBlk(b) = (b′, H ′,Γ′) and there exists ` such that (` 7→ b) ∈ G then ∆ :> βG∪H
′

Heap (H ′)

Moreover G ∪H ′ · (Ki)i is a heap decomposition of H ∪H ′.

Proof: We prove this by mutual induction on the serialization proof derivation.
•

Γ ` serHVal(prim) = (prim, ·,Γ)
: in that case βG∪H

′

Heap (H ′) = ∅
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•
(pλ 7→ p′λ) ∈ Γ

Γ,` serHVal(pλ) = (p′λ, ·,Γ)
: idem here we have βG∪H

′

Heap (H ′) = ∅

•
pλ /∈ dom(Γ) p′λ fresh pointer Γ, pλ 7→ p′λ ` serHBlk(H(pλ)) = (b,H ′′,Γ′) H ′ = H ′′, p′λ 7→ b

Γ ` serHVal(pλ) = (p′λ, H
′,Γ′)

:

Since pλ ∈ dom(G) we know that (pλ 7→ H(pλ)) ∈ G. Therefore by induction we know that ∆ >: βG∪H
′′

Heap (H ′′).
Observe the following:

βG∪H
′

Heap (H ′) = βG∪H
′′

Heap (H ′′) ∪ βG∪H
′

Heap (ν(pλ) 7→ b)

Therefore to show that ∆ :> βG∪H
′

Heap (H ′) we just need to show that:

∆ :> βG∪H
′

Heap (p′λ 7→ b)
= {H(λ, βBlk(b))}
= {H(λ, βBlk(H(pλ)))} by Lemma ??
= βGHeap(pλ 7→ H(pλ)) since pλ ∈ dom(G)

The last point is implied by the fact that ∆ :> βGHeap(H).
Moreover by induction we know that G ∪H ′′ · (Ki)i is a heap decomposition of H ∪H ′′. By Lemma ?? we know
that (_ 7→ b) 6→ref H . Moreover p′λ is a fresh location, therefore it is easy to check that G ∪ H ′ · (Ki)i is a heap
decomposition of H ∪H ′.

•
Γ0 = Γ ∀i ∈ [1, n] : Γi−1 ` serHVal(vi) = (ui, Hi,Γi) H ′ = H1, . . . ,Hn

Γ ` serHBlk({|c′; (fi 7→ vi)
i≤n|}) = ({|c′; (fi 7→ ui)

i≤n|}, H ′,Γn)
:

By applying repeatedly Lemma ?? we get that for all i ∈ [1, n], image(Γi) ∩ dom(H) = ∅.
We know that there exists pλ such that (pλ 7→ {|c′; (fi 7→ vi)

i≤n|})) ∈ G. Since G, (Ki)i is a heap decomposition,
we know that for all i ∈ [1, n], ui ∈ dom(G) or ui is a primitive value. Therefore by induction we know that for all
i ∈ [1, n] ∆ :> βG∪Hi

Heap (Hi), which implies that :

∆ :>
⋃

1≤i≤n

βG∪Hi
Heap (Hi) = β

G∪(
⋃

1≤i≤nHi)

Heap

 ⋃
1≤i≤n

Hi


Moreover the induction hypothesis gives us the fact that for all i ∈ [1, n], G ∪ Hi · (Ki)i is a heap decomposition
of H ∪Hi. It is rather simple to check that this implies that G ∪

(⋃
1≤i≤nHi

)
· (Ki)i is a heap decomposition of

H
(⋃

1≤i≤nHi

)
.

• Block serialization of arrays and intents works exactly like the object case.

I. Proof of Theorem 1

The global preservation theorem states that our analysis is soundly over-approximating the configuration reduction
relation. To prove it, we need an extra assumption on the values that can be given by the Android system to a callback:

Assumption 6 For all configuration decomposition (G, (Ki, (lk
i,j)j)i), for all location ` pointing to an activity object,

for all life-cycle state s, for any arbitrary callback state α`.s = 〈_ · _ · _ · R〉 :: ε, the callback register R contains only
locations in G.

This is because callback arguments are supplied by the system, and are either primitive values, locations pointing to
running Activity objects (which are always global), or locations to Bundle. Bundle are special objects (that we did not
model), which are used to save an activity state in order to be able to restore it after it has been destroyed (for example by
a screen orientation change). To properly handle callbacks, we would need to model these Bundle objects, and to always
abstract them in a flow-insensitive fashion.

Theorem 2 (Global Preservation) If Ψ ⇒∗ Ψ′ under a given program P , then for any X ∈ βCnf(Ψ), for any ∆ :> X
there exists ∆′ and X ′ ∈ βCnf(Ψ

′) such that ∆′ :> X ′ and (|P |) ∪∆ ` ∆′.

The proof can be found in Section ??.
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J. Application to Taint Tracking

Lemma 18 (Taint Abstraction Soundness) For all configuration Ψ = Ω · Ξ · H · S, for all φ = 〈`, s, π, γ, α〉 ∈ Ω or
φ = ⟪`, `′, π, γ, α⟫ ∈ Ξ, if α = 〈c,m, pc · u∗ · st∗ · R〉 :: _ then for all register rk we have that all ∆ ∈ βCnf(Ψ) with
configuration decomposition (G, (Ki, (lk

i,j)j)i) such that Kn is φ’s local heap, for all ∆′ :> ∆, there exist two abstract
local state facts LStatec,m,pc((λ̂t, û

∗); v̂∗; ĥ; k̂) and LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) such that:

β`rLst(〈c,m, pc · u∗ · st∗ ·R〉,Kn, (lk
n,j)j)

= LStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂) ∈ ∆

vR LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) ∈ ∆′

and there exists t̂ such that taintΨ(R(rk))vt t̂ and :

(|P |) ∪∆′ ` Taint(v̂′i, ĥ
′, t̂)

Proof: The first part is easy, the only difficulty lies in proving that there exists t̂ such that taintΨ(R(rk))vt t̂ and :

(|P |) ∪∆′ ` Taint(v̂′i, ĥ
′, t̂)

We let:

taint0Ψ(u) =

{
t if u = primt

public otherwise

For all n we define the following functions:

taintn+1
Ψ (u) =


tt
i taint

n
Ψ(vi) if u = ` ∧H(`) = {|c; (fi 7→ vi)

∗|}
tt
i taint

n
Ψ(vi) if u = ` ∧H(`) = τ [v∗]

tt
i taint

n
Ψ(vi) if u = ` ∧H(`) = {|@c; (ki 7→ vi)

∗|}
t if u = primt

We know that taintΨ(v) = limn∈N taintnΨ(v) and that this limit is reached in a finite number of step (since the lattice and
the heap are finite). We then show by induction on n that for all u, for all uv û, there exists t̂ such that taintnΨ(u)vt t̂
and:

(|P |) ∪∆′ ` Taint(û, ĥ′, t̂)

Applying the previous result to taintΨ(R(rk)) conclude this proof.

Lemma 19 If for all sinks (c,m) ∈ Sinks, ∆ ∈ βCnf(Ψ):

(|P |) ∪∆ ` LStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ Taint(v̂i, ĥ, secret)

is unsatisfiable for each i, then P does not leak from Ψ.

Proof: We prove the contraposition. Assume that a program P satisfies Definition 2, then there exists a configuration
Ψ′ starting from Ψ where one of the registers rk in a sink (c,m) contains a secret value. By Theorem 1, for all ∆ ∈ βCnf(Ψ)
there exists ∆′ ∈ βCnf(Ψ

′) and ∆′′ :> ∆′ such that (|P |) ∪∆ ` ∆′′.
Let (G, (Ki, (lk

i,j)j)i) be the configuration decomposition of ∆′ and Kn be the local heap of φ. By Lemma ?? there
exist two abstract local state facts LStatec,m,pc((λ̂t, û

∗); v̂∗; ĥ; k̂) and LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) such that:

β`rLst(〈c,m, pc · u∗ · st∗ ·R〉,Kn, (lk
n,j)j)

= LStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂) ∈ ∆′

vR LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) ∈ ∆′′

and there exists t̂ such that taintΨ′(R(rk))vt t̂ and :

(|P |) ∪∆′′ ` Taint(v̂′i, ĥ
′, t̂)

Since taintΨ′(R(rk)) = secret we know that t̂ = secret. This implies that the following formula is derivable:

(|P |) ∪∆ ` LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) ∧ Taint(v̂′i, ĥ, secret)
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K. Proof of Lemma ??

Proof:
If Σ = Σ′ then it suffices to take ∆′ = ∆.
We are just going to prove that this is true if Σ reduces to Σ′ in one step. The lemma proof is then obtained by a

straightforward induction on the reduction length.
Let X ∈ βLcnf(Σ) with local configuration decomposition (G, (Ki)i≤n,K, (lk

j)j). Let ∆ be such that ∆ :> X .
a) Notation Conventions:: When not explicitly mentioned otherwise, we let Σ = `r ·α ·π ·γ ·H ·S with α = L1 :: α0 ,

and let Σ′ = `r·α′·π′·γ′·H ′·S′ with α′ = L′1 :: α′0. We also let L1 = 〈c,m, pc·u∗·st∗·R〉, and L′1 = 〈c′,m′, pc′·u′∗·st ′∗·R′〉.
b) Proof Structure: First we are going to describe each case structure:

1) Define (G′, (K ′i)i≤n,K
′, (lk′j)j) and show that it is a local configuration decomposition of Σ′, and that ∀i,Ki 6=

K =⇒ Ki = K ′i
2) Define DCall, DHeap, DStat, DPact and DPthr such that:
• β`rCall(α

′,K ′, (lk′j)j)\β`rCall(α,K, (lk
j)j) ⊆ DCall

• βG
′

Heap(H ′)\βGHeap(H) ⊆ DHeap

• βStat(S
′)\βStat(S) ⊆ DStat

• β`rPact(π
′)\β`rPact(π) ⊆ DPact

• βGPthr(γ
′)\βGPthr(γ) ⊆ DPthr

3) Define ∆Call,∆Heap,∆Stat, ∆Pact and ∆Pthr.
4) Show that:
• DCall <: ∆ ∪∆Call

• DHeap <: ∆Heap

• DStat <: ∆Stat

• DPact <: ∆Pact

• DPthr <: ∆Pthr

5) Show that:
• (|P |) ∪∆ ` ∆Call

• (|P |) ∪∆ ` ∆Heap

• (|P |) ∪∆ ` ∆Stat

• (|P |) ∪∆ ` ∆Pact

• (|P |) ∪∆ ` ∆Pthr

This is enough to prove the lemma. Indeed by point 1) we know that X ′ = β`rCall(α
′,K ′, (lk′j)j)∪βG

′

Heap(H ′)∪βStat(S
′)∪

β`rPact(π
′) ∪ βG′Pact(γ

′) is in βLcnf(Σ
′). Let ∆′ = ∆ ∪∆Call ∪∆Heap ∪∆Stat ∪∆Pact ∪∆Pthr.

Using the fact that ∆ :> X and point 4) we get by applying Lemma ?? that X ∪DCall ∪DHeap ∪DStat ∪DPact <: ∆′.
We know that X ′ ⊆ X ∪DCall ∪DHeap ∪DStat ∪DPact ∪DPthr by the definitions in point 2). Then by applying Lemma ??
we have X ′ <: X ∪DCall ∪DHeap ∪DStat ∪DPact ∪DPthr, and by applying Lemma ?? we have X ′ <: ∆′.

The fact that (|P |) ∪∆ ` ∆ and point 5) implies that (|P |) ∪∆ ` ∆′, which concludes the proof.

We apply this method to each case, and detail the most important cases in the next following items.
• (R-GOTO): The rule applied is goto pc′.

1) Let G′, (K ′i)i = G, (Ki)i and (lk′j)j = (lkj)j . It is trivial to check that (G′, (K ′i)i,K
′, (lk′j)j) is a local

configuration decomposition of Σ′.
2) Since G′, (K ′i)i = G, (Ki)i and (lk′j)j = (lkj)j we know that for all i ≥ 2 we have Γi(K, (lkj)j) = Γi(K ′, (lk′j)j).

Therefore using Proposition ?? we know that for all i ≥ 2 we have:

β`rLstInv(αi, i, _,K, (lk
n)n) = β`rLstInv(αi, i, _,K

′, (lk′n)n)

Hence DCall = β`rLst(〈c,m, pc′ · u∗ · st∗ ·R〉,K ′, (lk′n)n) satisfies the wanted properties.
3) We know that β`rLst(〈c,m, pc · u∗ · st∗ · R〉,K, (lkn)n) = LStatec,m,pc((λ̂t, û

∗); v̂∗; ĥ; k̂) is in X and X <: ∆.
Therefore there exists LStatec,m,pc((λ̂′t, û

′∗); v̂′∗; ĥ′; k̂′) in ∆ such that :

LStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂)vR LStatec,m,pc((λ̂′t, û

′∗); v̂′∗; ĥ′; k̂′)

Then we define ∆Call = LStatec,m,pc′((λ̂
′
t, û
′∗); v̂′∗; ĥ′; k̂′).
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4) We are going to show that DCall <: ∆ ∪∆Call. First one can check that:

β`rLst(〈c,m, pc′ · u∗ · st∗ ·R〉,K ′, (lk′n)n) = LStatec,m,pc′((λ̂t, û
∗); v̂∗; ĥ; k̂)

The fact that LStatec,m,pc′((λ̂t, û∗); v̂∗; ĥ; k̂)vR LStatec,m,pc′((λ̂
′
t, û
′∗); v̂′∗; ĥ′; k̂′) is then trivial.

5) We are going to show that (|P |) ∪∆ ` ∆Call. We know that (|goto pc′|)pp is included in (|P |), therefore we have
the following rule:

LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) =⇒ LStatec,m,pc′((λ̂

′
t, û
′∗); v̂′∗; ĥ′; k̂′)} ∈ (|P |)

Moreover LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) is in ∆, therefore by resolution we get:

(|P |) ∪∆ ` LStatec,m,pc′((λ̂
′
t, û
′∗); v̂′∗; ĥ′; k̂′)

This concludes this proof.
• (R-MOVEFLD) The rule applied is move ro.f rhs . We know that there exist two abstract local state facts
LStatec,m,pc((λ̂t, û

∗); v̂∗; ĥ; k̂) and LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) such that:

β`rLst(〈c,m, pc·u∗·st∗·R〉,K, (lkn)n) = LStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂)vRLStatec,m,pc((λ̂′t, û

′∗); v̂′∗; ĥ′; k̂′) ∈ ∆ (10)

Let ΣJroK = `′′, we know by Proposition ?? we know that either `′′ ∈ G or `′′ ∈ K.
Case 1: `′′ ∈ G

By Lemma ?? we know that βLocVal(ΣJroK,K)v v̂′ro . Moreover by applying Lemma ?? to rhs we know that there
exists v̂′′ such that βLocVal(ΣJrhsK,K) v v̂′′ and that ∆ ∪ 〈〈rhs〉〉pp ` RHSpp(v̂

′′). By Lemma ?? there exists k̂a
such that ` Reach(v̂′′; ĥ′; k̂a) and k̂a is the indicator function of the set of reachable elements starting from v̂′′ in
the points-to graph of ĥ′.
1) For all j 6= a, let K ′j = Kj . Let Reacha be the subset of K defined as follows:

Reacha = {(pλ 7→ b) ∈ K | k̂a(λ) = 1}

Let M be the partial mapping containing, for all λ, exactly one entry (pλ 7→ ⊥) if there exists a
pointer p′λ in the domain of Reacha. Moreover we assume that the location pλ is a fresh location. Let
K ′ = (K)|dom(K)\dom(Reacha) ∪M , and G′ = (G[`′′ 7→ G(`′′)[f 7→ ΣJrhsK]]) ∪Reacha.
We define lka to be the indicator function of Reacha, lk′1 = lka tloc lk1 and (lk′j)j>1 = (lkj)j>1. One can
check that G′, (K ′i)i is a heap decomposition of H ′ · S′. We know that:

dom(K ′)\
{
ppp ∈ dom(K ′) | ∃p′, lka(p′pp) = 1

}
= dom(K ′)\

{
ppp ∈ dom(K ′) | ∃p′, p′pp ∈ dom(Reacha)

}
= dom(K ′)\dom(M)

⊆ dom(K)

Therefore by Proposition ??.5 we get that for all i ≥ 2, Γi(K, (lkj)j) = Γi(K ′, (lk′j)j). Moreover
dom(K ′)\dom(K) = dom(M), hence by Lemma ?? we know that (K ′, (lk′j)j) is a filter history of α′.
The fact that (G′, (K ′i)i,K

′, (lk′j)j) is a local configuration decomposition of Σ′ follows easily.
2) Let L2, . . . , Ln be such that α = 〈c,m, pc · u∗ · st∗ ·R〉 :: L2 :: · · · :: Ln. By Proposition ?? we know that for

all j ≥ 2:
β`rLstInv(Lj , j, _,K, (lk

i)i) = β`rLstInv(Lj , j, _,K
′, (lk′i)i)

One can then show that the following definitions of DCall and DHeap satisfy the wanted properties:
∗ DCall = β`rLst(〈c,m, pc + 1 · u∗ · st∗ ·R〉,K ′, (lk′i)i)
∗ DHeap = {H(λ, b̂) | H(`′) = b ∧ λ = βLab(`′) ∧ b̂ = βBlk(b) ∧ `′ ∈ dom(Reacha)}
∪{H(λ, b̂) | λ = βLab(`′′) ∧ b̂ = βBlk(H(`′′)[f 7→ βVal(ΣJrhsK)])}

3) ∗ ∆Call = LStatec,m,pc+1((λ̂′t, û
′∗); lift(v̂′∗; k̂a); hlift(ĥ′; k̂a); k̂a t̂ k̂′).

∗ We define ∆Heap as follows: for all pp, if k̂a(pp) = 1 and ĥ′(pp) 6= ⊥ then H(pp, ĥ′(pp)) ∈ ∆Heap.
Moreover we add to ∆Heap the following formula: since βGHeap(H) <: ∆ and H(`′′) 6= ⊥ we know that there
exists H(λo, b̂o) ∈ ∆ such that βBlk(H(`′′))vnfs

Blk b̂o and λo = βLab(`′′). Then we add H(λo, b̂o[f 7→ v̂′′]) to
∆Heap.

4) We are going to show that:
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∗ DCall <: ∆ ∪∆Call : by applying Lemma ??.1 we know that:

β`rLst(〈c,m, pc + 1 · u∗ · st∗ ·R〉,K ′, (lk′n)n)) = LStatec,m,pc+1((λ̂t, û
∗); lift(v̂∗; k̂a); hlift(ĥ; k̂a); k̂a t̂ k̂)

Therefore we just have to prove that:

LStatec,m,pc+1((λ̂t, û
∗); lift(v̂∗; k̂a); hlift(ĥ; k̂a); k̂a t̂ k̂)

vR LStatec,m,pc+1((λ̂′t, û
′∗); lift(v̂′∗; k̂a); hlift(ĥ′; k̂a); k̂a t̂ k̂′) (11)

From Equation (??) we know that λ̂t = λ̂′t, û
∗vSeq û

′∗, v̂∗vSeq v̂
′∗, k̂vFilter k̂

′ and that ∀pp, ĥ(pp) 6= ⊥ =⇒
ĥ(pp)vBlk ĥ

′(pp).
To show that Equation (??) holds we have four conditions to check:
· We already know that λ̂t = λ̂′t and û∗ vSeq û

′∗.
· Since v̂∗ vSeq v̂

′∗, we know by applying Proposition ?? that lift(v̂∗; k̂a)vSeq lift(v̂
′∗; k̂a).

· Since k̂ vFilter k̂
′, it is straightforward to check that k̂a t̂ k̂ vFilter k̂a t̂ k̂′.

· By applying Proposition ?? we know that ∀pp, hlift(ĥ; k̂a)(pp)vBlk hlift(ĥ
′; k̂a)(pp).

∗ ∆Heap :> DHeap:
· In a first time we are going to show that:

∆Heap >: {H(λ, b̂) | H = H ′, `′ 7→ b ∧ λ = βLab(`′) ∧ b̂ = βBlk(b) ∧ `′ ∈ dom(Reacha)}

Let H(λ, b̂) be an element of the right set of the above relation. We know that there exists b, `′ such
that H(`′) = b, λ = βLab(`′), b̂ = βBlk(b) and `′ ∈ dom(Reacha). Besides `′ ∈ Reacha implies that
k̂a(λ) = 1. We have:

β`rLst(〈c,m, pc · u∗ · st∗ ·R〉,K, (lkn)n) = LStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂)

Therefore by definitions of β`rLst and of βLHeap we know that :

ĥ = {(pp 7→ βLocBlk (K(ppp),K)) | ppp ∈ dom(K)}

Since (`′ 7→ b) ∈ K we have ĥ(λ) = βLocBlk(b,K). Besides by applying Proposition ?? we know that
βBlk(b)vnfs

Blk βLocBlk(b,K). In summary:

b̂ = βBlk(b)vnfs
Blk βLocBlk(b,K) = ĥ(λ) (12)

By Equation (??) we know that ∀pp, ĥ(pp) 6= ⊥ =⇒ ĥ(pp)vBlk ĥ
′(pp). Since (`′ 7→ b) ∈ H , we know

that ĥ(λ) 6= ⊥, which implies that ĥ(pp)vBlk ĥ
′(pp), and by Proposition ?? we get thatĥ(pp)vnfs

Blk ĥ
′(pp).

Putting Equation (??) together with this we get that:

b̂vnfs
Blk ĥ(λ)vnfs

Blk ĥ
′(λ)

We know that k̂a(λ) = 1. Besides ĥ(λ) vnfs
Blk ĥ

′(λ) and ĥ(λ) 6= ⊥ implies that ĥ′(λ) 6= ⊥. Therefore
H(λ, ĥ′(λ)) ∈ ∆Heap, which concludes this case by showing that H(λ, b̂) <: H(ĥ′(λ)) ∈ ∆Heap.
· It remains to show that:

{H(λ, b̂) | λ = βLab(`′′) ∧ b̂ = βBlk(H(`′′)[f 7→ ΣJrhsK])} <: ∆Heap

Recall that βLocVal(ΣJrhsK,K)v v̂′′, H(λo, b̂o) ∈ ∆, βBlk(H(`′′))vnfs
Blk b̂o, λo = βLab(`′′) and H(λo, b̂o[f 7→

v̂′′]) ∈ ∆Heap.
By Proposition ?? we have βLocVal(ΣJrhsK,K)vnfs v̂′′, and by Proposition ?? we have βVal(ΣJrhsK)vnfs

βLocVal(ΣJrhsK,K). Therefore by transitivity of vnfs we have βVal(ΣJrhsK)vnfs v̂′′. Finally by definition
of βBlk we have that:

βBlk(H(`′′)[f 7→ ΣJrhsK]) = βBlk(H(`′′))[f 7→ βVal(ΣJrhsK)]

Applying Proposition ?? to βBlk(H(`′′))vnfs
Blk b̂o and βVal(ΣJrhsK)vnfs v̂′′ we get that :

βBlk(H(`′′))[f 7→ βVal(ΣJrhsK)]vnfs
Blk b̂o[f 7→ v̂′′]
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Which proves that :

H(λo, βBlk(H(`′′)[f 7→ ΣJrhsK])) <: H(λo, b̂o[f 7→ v̂′′]) <: ∆Heap

This concludes the proof of DHeap <: ∆Heap.
5) ∗ (|P |) ∪∆ ` ∆Call: Recall that LStatec,m,pc((λ̂t, û

∗); v̂∗; ĥ; k̂)vR LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) ∈ ∆ and

that:
∆Call = LStatec,m,pc+1((λ̂′t, û

′∗); lift(v̂′∗; k̂a); hlift(ĥ′; k̂a); k̂a t̂ k̂′)

We proved at the beginning of this case that ∆ ∪ 〈〈rhs〉〉pp ` RHSpp(v̂
′′) and ` Reach(v̂′′; ĥ′; k̂a).

Recall that λo = βLab(`′′) and that `′′ ∈ dom(G). Lemma ?? applied to `′′ and LStatepp((λ̂
′
t, û
′∗); v̂′∗; ĥ′; k̂′)

gives us that NFS(λo) = βLocVal(`
′′,K) v v̂′o. Moreover we know that H(λo, b̂o) ∈ ∆, hence we can apply

the following rule:

NFS(λo)v v̂′o ∧ H(λo, b̂o) =⇒ GetBlko(v̂
′∗; ĥ′;NFS(λo); b̂o)

Finally we apply the following rule:

RHSpp(v̂
′′) ∧ LStatepp((λ̂

′
t, û
′∗); v̂′∗; ĥ′; k̂′) ∧ GetBlko(v̂

′∗; ĥ′;NFS(λo); b̂o) ∧ Reach(v̂′′; ĥ′; k̂a)

=⇒ LStatec,m,pc+1((λ̂
′
t, û
′∗); lift(v̂′∗; k̂′); hlift(ĥ; k̂′); k̂a t̂ k̂′)

This concludes this case.
∗ (|P |) ∪∆ ` ∆Heap: (|P |) contains the two following rules:

RHSpp(v̂
′′) ∧ LStatepp((λ̂

′
t, û
′∗); v̂′∗; ĥ′; k̂′) ∧ GetBlko(v̂

′∗; ĥ′;NFS(λo); b̂o) ∧ Reach(v̂′′; ĥ′; k̂a)

∧ H(λo, {|c′; (f ′ 7→ û′′)∗, f 7→ _|}) =⇒ H(λo, {|c′; (f ′ 7→ û′′)∗, f 7→ v̂′′)|}) (13)

RHSpp(v̂
′′) ∧ LStatepp((λ̂

′
t, û
′∗); v̂′∗; ĥ′; k̂′) ∧ GetBlko(v̂

′∗; ĥ′;NFS(λo); b̂o)

∧ Reach(v̂′′; ĥ′; k̂a) ∧ Reach(v̂′′; ĥ′; k̂a) =⇒ LiftHeap(ĥ′; k̂a) (14)

∆Heap is the set defined by:
· for all pp, if k̂a(pp) = 1 ∧ ĥ′(pp) 6= ⊥ then H(pp, ĥ′(pp)) ∈ ∆Heap:

Let pp satisfying the above conditions. The following rules is in (|P |):

LiftHeap(ĥ′; k̂a) ∧ ĥ′(pp) = b̂ ∧ k̂a(pp) = 1 =⇒ H(pp, b̂)

Rule (??) plus the above rule yield (|P |) ∪∆ ` H(pp, ĥ′(pp)).
· H(λo, b̂o[f 7→ v̂′′]) is in ∆Heap: directly entailed by the rule (??).

Case 2: `′′ ∈ K.
Let λo = βLab(`′′), since `′′ ∈ dom(K) we have that v̂o = FS(λo). We know from Equation (??) that v̂o v v̂′o,
therefore FS(λo)v û′o.
Let b be such that (`′′ 7→ b) ∈ H . This implies that ĥ(λo) 6= ⊥, hence from Equation (??) we get that ĥ(λo)vBlk

ĥ′(λo), which in turn implies that there exists b̂o = {|c′; (f 7→ û′′)|} such that b̂o = ĥ′(λo).
1) Let K ′ = K[`′′ 7→ K(`′′)[f 7→ ΣJrhsK]] , G′ = G and for all i 6= a, K ′i = Ki. Let (lk′j)j = (lkj)j . Observe

that dom(K) = dom(K ′), and that (lkj)j = (lk′j)j , therefore by Proposition ??.4 we know that for all j ≥ 2,
Γj(K, (lkj)j) = Γj(K ′, (lk′j)j). By applying Lemma ?? we get that (K ′a, (lk

′j)j) is a filter history of α′. It is
then rather easy to check that (G′, (K ′i)i,K

′, (lk′j)j) is a local configuration decomposition of Σ′.
2) By Proposition ?? we get that for all j ≥ 2:

β`rLstInv(αj , j, _,K, (lk
i)i) = β`rLstInv(αj , j, _,K

′, (lk′i)i)

It is then easy to check that DCall = β`rLst(〈c,m, pc + 1 · u∗ · st∗ ·R〉,K ′, (lk′n)n) satisfies the wanted property.
3) By Lemma ?? we know that there exists v̂′′ such that βLocVal(ΣJrhsK,K)v v̂′′ and ∆∪ 〈〈rhs〉〉pp ` RHSpp(v̂

′′).
Then we define ∆Call to be the set containing the predicate:

LStatec,m,pc+1((λ̂′t, û
′∗); v̂′∗; ĥ′[λo 7→ b̂o[f 7→ v̂′′]]︸ ︷︷ ︸

ĥ′1

; k̂′)
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4) We are going to show that DCall <: ∆Call ∪∆: first one can check that:

β`rLst(〈c,m, pc + 1 · u∗ · st∗ ·R〉,K, (lkn)n)

= LStatec,m,pc+1((λ̂t, û
∗); v̂∗; ĥ[λo 7→ ĥ(λo)[f 7→ βLocVal(ΣJrhsK,K)]]︸ ︷︷ ︸

ĥ1

; k̂)

We are trying to prove that:

LStatec,m,pc+1((λ̂t, û
∗); v̂∗; ĥ1; k̂)vR LStatec,m,pc+1((λ̂′t, û

′∗); v̂′∗; ĥ′1; k̂′)

Since we already know that:

LStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂)vR LStatec,m,pc((λ̂′t, û

′∗); v̂′∗; ĥ′; k̂′) (15)

We just need to prove that ∀pp, ĥ1(pp) 6= ⊥ =⇒ ĥ1(pp)vBlk ĥ
′
1(pp):

∗ Equation ?? gives us that ∀pp, ĥ(pp) 6= ⊥ =⇒ ĥ(pp) vBlk ĥ
′(pp), and we know that for all pp 6= λo we

have ĥ(pp) = ĥ1(pp) and ĥ′(pp) = ĥ′1(pp). Hence ∀pp 6= λo, (ĥ1)(pp) 6= ⊥ =⇒ ĥ1(pp)vBlk ĥ
′
1(pp).

∗ ĥ1(λo) = ĥ(λo)[f 7→ βLocVal(ΣJrhsK,K)] and ĥ′1(λo) = b̂o[f 7→ v̂′′]. Moreover ĥ(λo) 6= ⊥, so ĥ(λo) vBlk

ĥ′(λo) = b̂o. Therefore by Proposition ?? we have ĥ1(λo)vBlk ĥ
′
1(λo).

5) We are going to show that (|P |) ∪∆ ` ∆Call: Recall that ∆ ∪ 〈〈rhs〉〉pp ` RHSpp(v̂
′′).

We know that ` FS(λo)v v̂′o. Moreover recall that b̂o = {|c′; (f 7→ û′′)|} = ĥ′(λo). Therefore we can apply the
following two rules:

FS(λo)v v̂′o ∧ b̂o = ĥ′(λo) =⇒ GetBlko(v̂
′∗; ĥ;FS(λo); b̂o)

RHSpp(v̂
′′) ∧ LStatepp((λ̂

′
t, û
′∗); v̂′∗; ĥ′; k̂′) ∧ GetBlko(v̂

′∗; ĥ;FS(λo); b̂o)

=⇒ LStatec,m,pc+1((λ̂
′
t, û
′∗); v̂′∗; ĥ[λ 7→ b̂o[f 7→ v̂′′]; k̂′)

Which conclude this case.
• (R-CALL)

Since Σ reduces to Σ′ by applying the rule invoke ro m′ (rik)k≤n we know that ΣJroK = ` and that

lookup(typeH(`),m′) = (c′, st ′∗) sign(c′,m′) = τ1, . . . , τn
loc−−→ τ

R′ = ((rj 7→ 0)j≤loc , rloc+1 7→ `, (rloc+1+k 7→ ΣJrikK)k≤n) α′ = 〈c′,m′, 0 · (ΣJrikK)k≤n · st ′∗ ·R′〉 :: α

1) Let G′, (K ′i)i = G, (Ki)i and (lk′j)j = (pp 7→ 0)∗ :: (lkl)l (we have one more filter in the list).
It is easy to check that G′, (K ′i)i is a heap decomposition of H ′ · S′. By Proposition ??.3 we know that for all
j ≥ 1, Γj(K, (lkj)j) = Γj+1(K ′, (lk′j)j). Moreover Γ1(K, (lkj)j) = Γ1(K ′, (lk′j)j).
Let us show that (K ′a, (lk

′j)j) is a filter history α′. The fact that:

∀i,∀ppp,
(
(i = 0 ∧ ppp ∈ dom(K ′)) ∨ lk′i(ppp) = 1

)
=⇒ ∀j 6= i, lk′j(ppp) = 0

is rather obvious here, so we are going to focus on showing that:

Γi(K ′, (lk′j)j)(pp) 6= Γl(K ′, (lk′j)j)(pp) =⇒ Γi(K ′, (lk′j)j)(pp) 6∈ dom(α′|≥l)

– If 1 < i < l ≤ n. For all pp we have:

Γi(K ′a, (lk
′j)j)(pp) 6= Γl(K ′a, (lk

′j)j)(pp) iff Γi−1(Ka, (lk
j)j)(pp) 6= Γl−1(Ka, (lk

j)j)(pp)

Moreover since (Ka, (lk
j)j) is a filter history of α we know that:

Γi−1(Ka, (lk
j)j)(pp) 6= Γl−1(Ka, (lk

j)j)(pp) implies Γi−1(Ka, (lk
j)j)(pp) 6∈ dom(α|≥l−1)

Since l > 2, α|≥l−1 = α′|≥l. Moreover Γi−1(Ka, (lk
j)j)(pp) = Γi(K ′a, (lk

′j)j)(pp), so:

Γi−1(Ka, (lk
j)j)(pp) 6∈ dom(α|≥l−1) =⇒ Γi(K ′a, (lk

′j)j)(pp) 6∈ dom(α′|≥l)

Hence we have:

Γi(K ′a, (lk
′j)j)(pp) 6= Γl(K ′a, (lk

′j)j)(pp) =⇒ Γi(K ′a, (lk
′j)j)(pp) 6∈ dom(α′|≥l)
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– If i = 1 and 1 < l ≤ n. For all pp we have:

Γ1(K ′a, (lk
′j)j)(pp) 6= Γl(K ′a, (lk

′j)j)(pp) iff Γ1(Ka, (lk
j)j)(pp) 6= Γl−1(Ka, (lk

j)j)(pp)

If l = 2 then Γ1(Ka, (lk
j)j)(pp) 6= Γl−1(Ka, (lk

j)j)(pp) is never true, so the result holds. If l > 2 then the
same reasoning that we did in the previous case works.

The fact that (G′, (K ′i)i,K
′, (lk′j)j) is a local configuration decomposition of Σ′ follows easily.

2) By Proposition ?? we get that for all j > 2:

β`rLstInv(αj , j, _,K, (lk
i)i) = β`rLstInv(αj , j + 1, _,K ′, (lk′i)i)

One can then show that the following set DCall satisfies the wanted property:

DCall = {β`rLst(〈c′,m′, 0 · (ΣJrikK)k≤n · st ′∗ ·R′〉,K ′, (lk′j)j)} ∪ {β`rLstInv(〈c,m, pc · u∗ · st∗ ·R〉, 2, c′,K ′, (lk′j)j)}

3) We know that there exist LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) ∈ ∆ and LStatec,m,pc((λ̂t, û

∗); v̂∗; ĥ; k̂) such that

β`rLst(〈c,m, pc ·u∗ · st∗ ·R〉,K, (lkn)n) = LStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂)vR LStatec,m,pc((λ̂′t, û

′∗); v̂′∗; ĥ′; k̂′) (16)

Let λo = βLab(`). Let û∗call = (ûik)k≤n and û′∗call = (û′ik)k≤n. One can check that:

β`rLst(〈c′,m′, 0 · (0k)k≤loc , (ΣJrikK)k≤n · st ′∗ ·R′〉,K ′, (lk′j)j) = LStatec′,m′,0((λ̂t, û
∗
call); (0̂k)k≤loc , û∗call; ĥ; 0∗)

(17)

β`rLstInv(〈c,m, pc · u∗ · st∗ ·R〉, 2, c′,K ′, (lk′j)j) = Invc
′

c,m,pc((λ̂t, û
∗); v̂∗; k̂) (18)

We define ∆Call = {LStatec′,m′,0((λ̂′t, û
′∗
call); (0̂k)k≤loc , û′∗call; ĥ

′; 0∗)} ∪ {LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′)}

4) We are going to show that DCall <: ∆ ∪∆Call, or more specifically that:

Invc
′

c,m,pc((λ̂t, û
∗); v̂∗; k̂) v∆

Inv LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) (19)

LStatec′,m′,0((λ̂t, û
∗
call); (0̂k)k≤loc , û∗call; ĥ; 0∗) vR LStatec′,m′,0((λ̂′t, û

′∗
call); (0̂k)k≤loc , û′∗call; ĥ

′; 0∗) (20)

Eq. (??): All conditions are trivial consequences of Equation (??), except for Call∆∪∆Call
ro,c′,m′

(v̂′∗; ĥ′), that we are going to
show.
We know by Lemma ?? that βLocVal(ΣJroK,K)v v̂′o. The fact that lookup(typeH(`),m′) = (c′, st ′∗) implies that
H(`) = {|c′′; _|} for some class c′′ such that c′′ ≤ c′, and that c′ ∈ l̂ookup(m′). By definition of βLcnf(Σ) we
know that if ` ∈ dom(G) then there exists H(λo, {|c′′; _|}) ∈ X , and if ` ∈ dom(K) then ĥ(λo) = {|c′′; _|}.
∗ If ` ∈ dom(K) and ĥ(λo) = {|c′; _|}: then by definition of βLocVal we have βLocVal(ΣJroK,K) = FS(λo),

hence FS(λo)v v̂′o. Besides since ĥ(λo) = {|c′′; _|} vBlk ĥ
′(λo) we know that there exists some b̂ such that

ĥ′(λo) = {|c′′; b̂|}.
∗ If ` ∈ dom(G) and H(λo, {|c′′; _|}) ∈ X , then there exists b̂ such that H(λo, {|c′′; b̂|}) ∈ ∆. Besides by

definition of βLocVal we have βLocVal(ΣJroK,K) = NFS(λo), which implies that v̂′o v NFS(λo).
This concludes the proof that Call∆∪∆Call

ro,c′,m′
(v̂′∗; ĥ′) holds.

Eq. (??): The fact that 0∗ vFilter 0∗ is trivial. From Equation (??) we know that ∀pp, ĥ(pp) 6= ⊥ =⇒ ĥ(pp)vBlk ĥ
′(pp)

and that û∗ vSeq v̂
∗. The latter implies that û∗call = (ûik)k≤n vSeq (û′ik)k≤n = v̂∗call. This concludes this case.

5) We are going to show that (|P |) ∪∆ ` ∆Call. Since LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) ∈ ∆ we just need to check

that (|P |) ∪∆ ` LStatec′,m′,0((λ̂′t, û
′∗
call); (0̂k)k≤loc , û′∗call; ĥ

′; 0∗)
As in case 4. we know that one of the following holds:

– if ` FS(λo)v v̂′o and ĥ′(λo) = {|c′′; b̂|} then we can apply the following rule:

FS(λo)v v̂′o ∧ ĥ′(λo) = {|c′′; b̂|} =⇒ GetBlko(v̂
′∗; ĥ′;FS(λo); {|c′′; b̂|})

– if ` NFS(λo)v v̂′o and H(λo, {|c′′; b̂|}) ∈ ∆ then we can apply the rule:

NFS(λo)v v̂′o ∧ H(λo, {|c′′; b̂|}) =⇒ GetBlko(v̂
′∗; ĥ′;NFS(λo); {|c′′; b̂|})

Hence ∆ ` GetBlko(v̂
′∗; ĥ′; _; {|c′′; b̂|}). Moreover we already knew that c′′ ≤ c′ and that c′ ∈ l̂ookup(m′), therefore

we can apply the following rule, which is included in (|P |):

LStatepp((λ̂
′
t, û
′∗); v̂′∗; ĥ′; k̂′) ∧ GetBlko(v̂

′∗; ĥ′; _; {|c′′; b̂|}) ∧ c′′ ≤ c′ =⇒
LStatec′,m′,0((λ̂

′
t, û
′
call); (0̂k)k≤loc , û′call; ĥ

′; 0∗)



49

This concludes the proof that (|P |) ∪∆ ` ∆Call.
• (R-RETURN)

1) Let G′, (K ′i)i = G, (Ki)i and (lk′j)j = (lk1 tloc lk2) :: (lki)i>2.
The fact that G′, (K ′i)i is a heap decomposition of Σ′ is easy to prove.
Since Σ  Σ′ we know that α = 〈c,m, pc · v∗ · st∗ · R〉 :: 〈c′,m′, pc′ · u′∗ · st ′∗ · R′〉 :: α1 and that α′ =
〈c′,m′, pc′+1·u′∗ ·st ′∗ ·R′[rres 7→ ΣJrresK]〉 :: α1. By Proposition ??.2 we know that for all j > 1, Γj+1(K, (lkj)j) =
Γj(K ′, (lk′j)j). Moreover Γ1(K, (lkj)j) = Γ1(K ′, (lk′j)j).
Let us show that (K ′a, (lk

′j)j) is a filter history α′. Let us show that (K ′a, (lk
′j)j) is a filter history α′. The fact

that:
∀i,∀ppp,

(
(i = 0 ∧ ppp ∈ dom(K ′)) ∨ lk′i(ppp) = 1

)
=⇒ ∀j 6= i, lk′j(ppp) = 0

is easy to prove, so we are going to focus on showing that:

Γi(K ′, (lk′j)j)(pp) 6= Γl(K ′, (lk′j)j)(pp) =⇒ Γi(K ′, (lk′j)j)(pp) 6∈ dom(α′|≥l)

– If 1 < i < l ≤ n, then for all pp we have:

Γi(K ′a, (lk
′j)j)(pp) 6= Γl(K ′a, (lk

′j)j)(pp) iff Γi+1(Ka, (lk
j)j)(pp) 6= Γl+1(Ka, (lk

j)j)(pp)

Moreover since (Ka, (lk
j)j) is a filter history of α we know that:

Γi+1(Ka, (lk
j)j)(pp) 6= Γl+1(Ka, (lk

j)j)(pp) implies Γi+1(Ka, (lk
j)j)(pp) 6∈ dom(α|≥l+1)

α|≥l+1 = α′|≥l, and Γi+1(Ka, (lk
j)j)(pp) = Γi(K ′a, (lk

′j)j)(pp), hence:

Γi+1(Ka, (lk
j)j)(pp) 6∈ dom(α|>l+1) =⇒ Γi(K ′a, (lk

′j)j)(pp) 6∈ dom(α′|≥l)

Therefore we have:

Γi(K ′a, (lk
′j)j)(pp) 6= Γl(K ′a, (lk

′j)j)(pp) =⇒ Γi(K ′a, (lk
′j)j)(pp) 6∈ dom(α′|≥l)

– If i = 1 and 1 < l ≤ n. For all pp we have:

Γ1(K ′a, (lk
′j)j)(pp) 6= Γl(K ′a, (lk

′j)j)(pp) iff Γ1(Ka, (lk
j)j)(pp) 6= Γl+1(Ka, (lk

j)j)(pp)

The same reasoning that we did in the previous case works.
The fact that (G′, (K ′i)i,K

′, (lk′j)j) is a local configuration decomposition of Σ′ follows easily.
2) By Proposition ?? we get for all j ≥ 1:

β`rLstInv(αj , j + 1, _,K, (lki)i) = β`rLstInv(αj , j, _,K
′, (lk′i)i)

One can then check that the following definition of DCall satisfies the wanted property:

DCall = {β`rLst(〈c′,m′, pc′ + 1 · u′∗ · st ′∗ ·R′[rres 7→ ΣJrresK]〉,K ′, (lk′j)j)}

3) We know that:

β`rLst(〈c,m, pc · u∗ · st∗ ·R〉,K, (lkj)j) = LStatec,m,pc((λ̂t, û
∗
1); v̂∗1 ; ĥ1; k̂1) (21)

vR LStatec,m,pc((ŵ
′
1, û
′∗
1 ); v̂′∗1 ; ĥ′1; k̂′1) ∈ ∆

β`rLstInv(〈c′,m′, pc′ · u′∗ · st ′∗ ·R′〉, 2, c,K, (lkj)j) = Invcc′,m′,pc′((λ̂t, û
∗
2); v̂∗2 ; k̂2) (22)

v∆
Inv LStatec′,m′,pc′((ŵ

′
2, û
′∗
2 ); v̂′∗2 ; ĥ′2; k̂′2) ∈ ∆

Let ∆Call = {LStatec′,m′,pc′+1((ŵ′2, û
′∗
2 ); lift(v̂′∗2 ; k̂′1)[res 7→ (v̂′∗1 )res]; ĥ

′
1; k̂′1 t̂ k̂′2)}.

4) By Proposition ??.1 and Proposition ??.2 we have Γ3(K, lk1 :: lk2) = Γ2(K, lk1 tloc lk2), therefore for all k ≤ |u∗2|
we have

βLocVal((u
∗
2)k,K, lk

1 :: lk2) = βLocVal((u
∗
2)k,K, lk

1 tloc lk2) (23)

Let rd be a register different from rres, we want to show that:

βLocVal(R
′(rd),K) = lift(βLocVal(R

′(rd),K, lk
1); k̂1) (24)
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If R′(rd) is a primitive value then this is trivial, so assume R′(rd) = ` = pλ. Let `′ = p′λ ∈ dom(K) (it exists
because K is a local heap). Then we have several cases:

– Case 1: for all p′′λ, we have, lk1(p′′λ) = 0. Then Γ∞(K, lk1)(λ) = Γ∞(K, ε)(λ) = `′, therefore :

βLocVal(`,K, lk
1) = βLoc(`,K, lk

1) = βLoc(`,K) = βLocVal(`,K)

Moreover ∀p′′λ, lk
1(p′′λ) = 0 also implies that k̂1(λ) = 0, hence :

lift(βLocVal(`,K, lk
1); k̂1) = βLocVal(`,K, lk

1)

This concludes this case.
– Case 2: there exists `′′ = p′′λ such that lk1(p′′λ) = 1. Then Γ∞(K, lk1)(λ) = `′′ and Γ∞(K, ε)(λ) = `′. We know

that lk1(`′′) = 1 and that `′ ∈ dom(K), therefore since (K, (lkj)j) is a filter history we have `′ 6= `′′.
This implies that Γ2(K, lk1)(λ) 6= Γ1(K, ε)(λ), therefore since (lki)i is a filter history of Σ we know that
`′ = Γ∞(K, ε)(λ) 6= R′(rd) = `. Hence one of the two following cases holds:
∗ ` 6= `′′. Then βLocVal(`,K) = βLocVal(`,K, lk

1) = NFS(λ) = lift(βLocVal(`,K, lk
1); k̂1).

∗ ` = `′′. Then we have:

βLocVal(`,K, lk
1) = FS(λ) and βLoc(`,K) = NFS(λ)

Moreover lk1(`′′) = 1 implies that k̂1(λ) = 1, therefore :

lift(βLocVal(`,K, lk
1); k̂1) = lift(FS(λ); k̂1) = NFS(λ) = βLoc(`,K)

Using Equation ?? and Equation ?? one can easily show that:

DCall = LStatec′,m′,pc′+1((λ̂t, û
∗
2); lift(v̂∗2 ; k̂1)[res 7→ (v̂∗1)res]; ĥ1;βFilter(lk

1 tloc lk2))

We want to show that DCall <: ∆ ∪∆Call: by definition of vR we need to check the four following conditions:
– λ̂t = ŵ′2 and û∗2 vSeq û

′∗
2 : this is trivially implied by Equation (??).

– ∀i, lift(v̂∗2 ; k̂1)[res 7→ (v̂∗1)res] v lift(v̂′∗2 ; k̂′1)[res 7→ (v̂′∗1 )res]: the case where i = rres is a trivial consequence of
Equation (??).
Assume i 6= rres: from Equation (??) we get that k̂1vFilter k̂

′
1, which implies that k̂1 = k̂′1. Let ŵ = lift((v̂∗2)i; k̂1))

and ŵ′ = lift((v̂′∗2 )i; k̂
′
1) = lift((v̂′∗2 )i; k̂1). We also know from Equation (??) that v̂2 vSeq v̂

′∗
2 , therefore by

applying Proposition ?? we get that ŵ v ŵ′.
– βFilter(lk

1 tloc lk2) vFilter k̂
′
1 t̂ k̂′2: from Equation (??), Equation (??) and β`rLst definition we know that k̂1 =

βFilter(lk
1) vFilter k̂

′
1 and that k̂2 = βFilter(lk

2) vFilter k̂
′
2. By Proposition ?? we know that βFilter(lk

1 tloc lk2) =
βFilter(lk

1) t̂ βFilter(lk
2). Therefore βFilter(lk

1 tloc lk2) = k̂1 t̂ k̂2. It directly follows that k̂1 t̂ k̂2 vFilter k̂
′
1 t̂ k̂′2.

– ∀pp, ĥ1(pp) 6= ⊥ =⇒ ĥ1(pp)vBlk ĥ
′
1(pp): this is trivially implied by Equation (??).

5) We are going to show that (|P |) ∪∆ ` ∆Call. First observe that the following rule is included in (|P |):

LStatec,m,pc((ŵ
′
1, û
′∗
1 ); v̂′∗1 ; ĥ′1; k̂′1) =⇒ Resc,m((ŵ′1, û

′∗
1 ); (v̂′∗1 )res; ĥ

′
1; k̂′1)

Therefore ∆ ` Resc,m((ŵ′1, û
′∗
1 ); (v̂′∗1 )res; ĥ

′
1; k̂′1).

By well-formedness of Σ we know that sign(c′,m′) = (τi)i≤n
loc−−→ τ , st ′pc′ = invoke ro m (rji)i≤n and

u∗ = (R′(rji)))i≤n. Moreover from Equation (??) we get that ∀i ≤ n, (û∗1)i = βLocVal((u
∗)i,K, lk

1) v (û′∗1 )i,
and from Equation (??) we get that ∀k, (v̂∗1)k = βLocVal((R

′(rk)),K, lk1) v (v̂′∗2 )k. Therefore for all i ≤ n we
have (û∗1)i = βLocVal((u

∗)i,K, lk
1) = βLocVal((R

′(rji)),K, lk
1) = (v̂∗1)ji , which implies that (û∗1)i v (û′∗1 )i and

(û∗1)i v (v̂′∗2 )ji . By Proposition ?? we get that (v̂′∗2 )ji u (û′∗1 )i 6= ⊥.
Similarly from Equation (??) we get that λ̂t = βVal(`r) = ŵ′1, and from Equation (??) we get that λ̂t = βVal(`r) =
ŵ′2, hence we have ŵ′1 = ŵ′2.
From Equation (??) we get that Call∆ro,c′,m′(v̂

′∗
2 ; ĥ′2) holds. Therefore there exist λo and c′′ such that:

( A︷ ︸︸ ︷
(NFS(λo)v (v̂′∗2 )o ∧ H(λo, {|c′′; _|}) ∈ ∆)∨

B︷ ︸︸ ︷(
FS(λo)v (v̂′∗2 )o ∧ ĥ′2(λo) = {|c′′; _|}

))
∧c′′ ≤ c′∧c′ ∈ l̂ookup(m′)

Hence one of the following cases holds:
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– If FS(λo)v (v̂′∗2 )o ∧ ĥ′2(λo) = {|c′′; _|} then we can apply the following rule:

FS(λo)v (v̂′∗2 )o ∧ ĥ′2(λo) = {|c′′; _|} =⇒ GetBlko(v̂
′∗
2 ; ĥ′2;FS(λo); {|c′′; _|})

– If NFS(λo) ∈ (v̂′∗2 )o ∧ H(λo, {|c′′; _|}) ∈ ∆ then we can apply the rule:

NFS(λo)v (v̂′∗2 )o ∧ H(λo, {|c′′; _|}) =⇒ GetBlko(v̂
′∗
2 ; ĥ′2;NFS(λo); {|c′′; _|})

Therefore we can apply the following rule, which is included in (|P |):

LStatec′,m′,pc′((ŵ
′
2, û
′∗
2 ); v̂′∗2 ; ĥ′2; k̂′2) ∧ GetBlko(v̂

′∗
2 ; ĥ′2; _; {|c′′; _|}) ∧ c′′ ≤ c′

∧ Resc,m((ŵ′1, û
′∗
1 ); (v̂′∗1 )res; ĥ

′
1; k̂′1) ∧ ŵ′1 = ŵ′2 ∧

(∧
j≤n

(v̂′∗2 )ij u (û′∗1 )j 6= ⊥
)

=⇒ LStatec′,m′,pc′+1((ŵ′2, û
′
2); lift(v̂′∗2 ; k̂′1)[res 7→ (v̂′∗1 )res]; ĥ

′
1; k̂′1 t̂ k̂′2)

This shows that (|P |) ∪∆ ` ∆Call.
• (R-NEWOBJ)

(R-NEWOBJ)
o = {|c′; (fτ 7→ 0τ )∗|}
` = pc,m,pc /∈ dom(H)

H ′ = H[` 7→ o] R′ = R[rd 7→ `]

Σ,new rd c
′ ⇓ Σ+[H 7→ H ′, R 7→ R′]

We know that there exist LStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂) and LStatec,m,pc((λ̂′t, û

′∗); v̂′∗; ĥ′; k̂′) such that:

β`rLst(〈c,m, pc · u∗ · st∗ ·R〉,K, (lkn)n) = LStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂)

vR LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) ∈ ∆ (25)

By Lemma ?? there exists k̂a such that ` Reach(FS(pp); ĥ′; k̂a) and k̂a is the indicator function of the set of reachable
elements starting from FS(pp) in the points-to graph of ĥ′.

1) For all j 6= a, let K ′j = Kj . Let Reacha the subset of K defined as follows:

Reacha = {(pλ 7→ b) ∈ K | k̂a(λ) = 1}

Let M be the partial mapping containing, for all λ, exactly one entry (pλ 7→ ⊥) if there exists a location p′λ in the
domain of Reacha. Besides we assume that the location pλ is a fresh location.Let G′ = G ∪ Reacha, and K ′ be
the local heap defined by:

K ′ =
(
(K)|dom(K)\dom(Reacha) ∪M

)
[` 7→ o]

Let lka be the indicator function of Reacha, lk′1 = lka tloc lk1 and (lk′j)j>1 = (lkj)j>1.
One can check that G′, (K ′i)i is a heap decomposition of H ′ · S′. Besides we have:

dom(K ′)\
{
ppp ∈ dom(K ′) | ∃p′, lka(p′pp) = 1

}
= dom(K ′)\

{
ppp ∈ dom(K ′) | ∃p′, p′pp ∈ dom(Reacha)

}
= dom(K ′)\ (dom(M) ∪ {`})
⊆ dom(K)

Hence by Proposition ??.5 we know that for all i ≥ 2, Γi(K, (lkj)j) = Γi(K ′, (lk′j)j). For all `x ∈ dom(α),
we have by well-formedness of Σ that `x ∈ dom(H). Therefore since ` 6∈ dom(H) we know that ` 6∈ dom(α).
Moreover dom(M) is a set of fresh locations, therefore (dom(K ′)\dom(K)) ∩ dom(α|>1) = ∅.
We know that dom(K ′)\dom(K) ⊆ dom(M)∪{`}, and dom(M) is a set of fresh locations so it is easy to check
that dom(M) ∩ {`′ | ∃j, lkj(`′) = 1} = ∅. Besides we are going to assume that ` is not only not appearing in
Σ, but that it is also not appearing in any of the filters, i.e. ` 6∈ {`′ | ∃j, lkj(`′) = 1}. Basically this means that `
is not only a location that was never used yet in the heap H , but also a location that was never introduced as a
“dummy” location for proof purposes. We could modify the (R-NEWOBJ) rule, and the configuration decomposition
definition, so as to avoid this, but that would make the definitions even lengthier than they are.
Hence we can apply Lemma ??, which shows us that (K ′a, (lk

′j)j) is a filter history of α′. The fact that
(G′, (K ′i)i,K

′, (lk′j)j) is a local configuration decomposition of Σ′ follows easily.
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2) Let L2, . . . , Ln be such that α = 〈c,m, pc · u∗ · st∗ ·R〉 :: L2 :: · · · :: Ln. By Proposition ?? we know that for all
j ≥ 2,

β`rLstInv(Lj , j, _,K, (lk
i)i) = β`rLstInv(Lj , j, _,K

′, (lk′i)i)

One can then show that the following definitions satisfy the wanted property:
– DCall = β`rLst(〈c,m, pc + 1 · u∗ · st∗ ·R[rd 7→ `]〉,K ′, (lk′i)i)
– DHeap = {H(λ, b̂) | H(`′) = b ∧ λ = βLab(`′) ∧ b̂ = βBlk(b) ∧ `′ ∈ dom(Reacha)}

3) – ∆Call = LStatec,m,pc+1((λ̂′t, û
′∗); lift(v̂′∗; k̂a)[d 7→ FS(pp)]; hlift(ĥ′; k̂a)[pp 7→ {|c′; (f 7→ 0̂τ )∗|}]; k̂a t̂ k̂′)

– We define ∆Heap as follows: for all pp, if k̂a(pp) = 1 ∧ ĥ′(pp) 6= ⊥ then H(pp, ĥ′(pp)) ∈ ∆Heap.
4) We are going to show that:

– DCall <: ∆Call : by applying Lemma ??.2 we get that:

β`rLst(〈c,m, pc + 1 · u∗ · st∗ ·R[rd 7→ `]〉,K ′, (lk′n)n))

= LStatec,m,pc+1((λ̂t, û
∗); lift(v̂∗; k̂a)[d 7→ FS(pp)]; hlift(ĥ; k̂a)[pp 7→ {|c′; (f 7→ 0̂τ )∗|}]; k̂a t̂ k̂)

Therefore we just have to prove that:

LStatec,m,pc+1((λ̂t, û
∗); lift(v̂∗; k̂a)[d 7→ FS(pp)];

ĥ1︷ ︸︸ ︷
hlift(ĥ; k̂a)[pp 7→ {|c′; (f 7→ 0̂τ )∗|}]; k̂a t̂ k̂) (26)

vR LStatec,m,pc+1((λ̂′t, û
′∗); lift(v̂′∗; k̂a)[d 7→ FS(pp)]; hlift(ĥ′; k̂a)[pp 7→ {|c′; (f 7→ 0̂τ )∗|}]︸ ︷︷ ︸

ĥ′1

; k̂a t̂ k̂′)

From Equation (??) we know that λ̂t = λ̂′t, û
∗ vSeq û

′∗, v̂∗ vSeq v̂
′∗, k̂ vFilter k̂

′ and that ∀pp, ĥ(pp) 6= ⊥ =⇒
ĥ(pp)vBlk ĥ

′(pp). To show that Equation (??) holds we have four conditions to check:
∗ We already know that λ̂t = λ̂′t and û∗ vSeq û

′∗.
∗ Since v̂∗ vSeq v̂

′∗, we know by applying Proposition ?? that lift(v̂∗; k̂a)vSeq lift(v̂
′∗; k̂a).

∗ Since k̂ vFilter k̂
′, it is straightforward to check that k̂a t̂ k̂ vFilter k̂a t̂ k̂′.

∗ For all pp′ 6= pp, ĥ1(pp′) = hlift(ĥ; k̂a)(pp′) and ĥ′1(pp′) = hlift(ĥ′; k̂a)(pp′). Therefore by applying
Proposition ?? we know that ĥ1(pp′) vBlk ĥ

′
1(pp′). Moreover ĥ1(pp) = ĥ′1(pp) = {|c′; (f 7→ 0̂τ )∗|}, hence

we have ĥ1(pp)vBlk ĥ
′
1(pp).

– ∆Heap :> DHeap: we want to show that:

∆Heap >: {H(λ, b̂) | H(`′) = b ∧ λ = βLab(`′) ∧ b̂ = βBlk(b) ∧ `′ ∈ dom(Reacha)}

Let H(λ, b̂) be an element of the right set of the above relation. We know that there exists b, `′ such that
H(`′) = b,λ = βLab(`′),b̂ = βBlk(b) and `′ ∈ dom(Reacha). Observe that `′ ∈ Reacha implies that k̂a(λ) = 1.
We have:

β`rLst(〈c,m, pc · u∗ · st∗ ·R〉,K, (lkn)n) = LStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂)

Therefore by definitions of β`rLst and of βLHeap we know that :

ĥ = {(pp 7→ βLocBlk (K(ppp),K)) | ppp ∈ dom(K)}

Since (`′ 7→ b) ∈ K we have ĥ(λ) = βLocBlk(b,K). Besides by applying Proposition ?? we know that βBlk(b)vnfs
Blk

βLocBlk(b,K). In summary:
b̂ = βBlk(b)vnfs

Blk βLocBlk(b,K) = ĥ(λ) (27)

By Equation (??) we know that ∀pp, ĥ(pp) 6= ⊥ =⇒ ĥ(pp) vBlk ĥ
′(pp). Since (`′ 7→ b) ∈ dom(H), we

know that ĥ(λ) 6= ⊥, which implies that ĥ(λ)vBlk ĥ
′(λ). Putting Equation (??) together with this we get that

b̂vnfs
Blk ĥ(λ)vnfs

Blk ĥ
′(λ).

We know that k̂a(λ) = 1. Besides ĥ(λ)vnfs
Blkĥ
′(λ) and ĥ(λ) 6= ⊥ implies that ĥ′(λ) 6= ⊥. Therefore H(λ, ĥ′(λ)) ∈

∆Heap, which concludes this case.
5) – (|P |) ∪∆ ` ∆Call: recall that LStatec,m,pc((λ̂t, û

∗); v̂∗; ĥ; k̂)vR LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) ∈ ∆ and that

∆Call = LStatec,m,pc+1((λ̂′t, û
′∗); lift(v̂′∗; k̂a)[d 7→ FS(pp)]; hlift(ĥ′; k̂a)[pp 7→ {|c′; (f 7→ 0̂τ )∗|}]; k̂a t̂ k̂′)
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We already know that ` Reach(FS(pp); ĥ′; k̂a), hence we can apply the following rule which is included in
(|P |):

LStatepp((λ̂
′
t, û
′∗); v̂′∗; ĥ′; k̂′) ∧ Reach(FS(pp); ĥ′; k̂a)

=⇒ LStatec,m,pc+1((λ̂′t, û
′∗); lift(v̂′∗; k̂a)[d 7→ FS(pp)]; hlift(ĥ′; k̂a)[pp 7→ {|c′; (f 7→ 0̂τ )∗|}]; k̂a t̂ k̂′)

This concludes this case.
– (|P |) ∪∆ ` ∆Heap: we can apply the following rule, which is included in (|P |):

LStatepp((λ̂
′
t, û
′∗); v̂′∗; ĥ′; k̂′) ∧ Reach(FS(pp); ĥ′; k̂a) =⇒ LiftHeap(ĥ′; k̂a) (28)

∆Heap is the set defined by: for all pp, if k̂a(pp) = 1 ∧ ĥ′(pp) 6= ⊥ then H(pp, ĥ′(pp)) ∈ ∆Heap. Let pp be a
program point satisfying those conditions. The following rules is in included in (|P |):

LiftHeap(ĥ′; k̂′∗a ) ∧ ĥ′(pp) = b̂ ∧ k̂a(pp) = 1 =⇒ H(pp, b̂)

Equation (??) plus the above rule yield (|P |) ∪∆ ` H(pp, ĥ′(pp)).
• (R-STARTTHREAD)

(R-STARTTHREAD)
` = ΣJriK H(`) = {|c′; (f 7→ v)∗|} γ′ = ` :: γ

Σ,start-thread ri ⇓ Σ+[γ 7→ γ′]

We know that there exist LStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂) and LStatec,m,pc((λ̂′t, û

′∗); v̂′∗; ĥ′; k̂′) such that:

β`rLst(〈c,m, pc·u∗·st∗·R〉,K, (lkn)n) = LStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂)vRLStatec,m,pc((λ̂′t, û

′∗); v̂′∗; ĥ′; k̂′) ∈ ∆ (29)

Let ` = ΣJriK, H(`) = b = {|c′; (f 7→ w)∗|}. By Assumption ?? we know that with c′ ≤ Thread. Let K be the local
heap of Σ. Also let λ = βLab(`) and b̂ = βBlk(b).

Case 1: (` 7→ b) ∈ G.
1) Let (G′, (K ′i)i,K

′, (lk′j)j) = (G, (Ki)i,K, (lk
j)j). This is trivially a local configuration decomposition of Σ′.

2) We take:
∗ DCall = β`rLst(〈c,m, pc + 1 · u∗ · st∗ ·R〉,K, (lkn)n)
∗ DPthr = T(λ, b̂)

3) We define:
∗ ∆Call = LStatec,m,pc+1((λ̂′t, û

′∗); v̂′∗; ĥ′; k̂′)
∗ (` 7→ b) ∈ G, therefore H(λ, b̂) ∈ X . Since X <: ∆ we have b̂′ such that H(λ, b̂′) ∈ ∆ and b̂ vnfs

Blk b̂
′. We

then define ∆Pthr = T(λ, b̂′).
4) We are going to show that:
∗ DCall <: ∆Call. We first check that DCall = LStatec,m,pc+1((λ̂t, û

∗); v̂∗; ĥ; k̂). This case then follows directly
from Equation (??).

∗ DPthr <: ∆Pthr: this case is trivial since b̂vnfs
Blk b̂

′.
5) We know by Lemma ?? that βLocVal(ΣJriK,K) v v̂′i. Moreover since ΣJriK = ` ∈ dom(G) we have

βLocVal(ΣJriK,K) = NFS(λ). We already knew that H(λ, b̂′) ∈ ∆, therefore we have ∆ ` NFS(λ)v v̂′i∧H(λ, b̂′),
which implies that ∆ ` GetBlki(v̂

′∗; ĥ′;NFS(λ); b̂′). Since βBlk(b) = βBlk({|c′; (f 7→ w)∗|})vnfs
Blk b̂
′ we know that

b̂′ = {|c′; (f 7→ ŵ)|}. Moreover we know that (|P |) contains the two following rules:

LStatepp((λ̂
′
t, û
′∗); v̂′∗; ĥ′; k̂′) ∧ GetBlki(v̂

′∗; ĥ′;NFS(λ); {|c′; (f 7→ ŵ)|}) ∧ c′ ≤ Thread
=⇒ T(λ, {|c′; (f 7→ ŵ)∗|})

LStatepp((λ̂
′
t, û
′∗); v̂′∗; ĥ′; k̂′) ∧ GetBlki(v̂

′∗; ĥ′;NFS(λ); {|c′; (f 7→ ŵ)|}) ∧ c′ ≤ Thread

=⇒ LStatec,m,pc+1((λ̂
′
t, û
′∗); v̂′∗; ĥ′; k̂′)

By applying them we get that (|P |) ∪∆ ` ∆Call and (|P |) ∪∆ ` ∆Pthr, which concludes this case.
Case 2: ` ∈ dom(K)
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1) By Lemma ?? there exists k̂a such that ` Reach(FS(λ); ĥ′; k̂a) and k̂a is the indicator function of the set of
reachable elements starting from FS(λ) in the points-to graph of ĥ′. For all j 6= a, let K ′j = Kj , and let Reacha
be the subset of K defined as follows:

Reacha = {(pλ 7→ b) ∈ K | k̂a(λ) = 1}

Let M be the partial mapping containing, for all λ′, exactly one entry (pλ′ 7→ ⊥) if there exists a location p′λ′
in the domain of Reacha. Besides we assume that the location pλ′ is a fresh location.
Let K ′ =

(
(K)|dom(K)\dom(Reacha) ∪M

)
and G′ = G∪Reacha, and we define lka to be the indicator function

of Reacha, lk′1 = lka tloc lk1 and (lk′j)j>1 = (lkj)j>1 .
One can check that G′, (K ′i)i is a heap decomposition of H ·S. As we did in (R-MOVEFLD), we can apply By
Proposition ??.5 to get that for all i ≥ 2, Γi(K, (lkj)j) = Γi(K ′, (lk′j)j). dom(M) is a set of fresh locations,
therefore we can apply Lemma ??, which shows us that (K ′a, (lk

′j)j) is a filter history of α′. The fact that
(G′, (K ′i)i,K

′, (lk′j)j) is a local configuration decomposition of Σ′ follows easily.
2) Let L2, . . . , Ln be such that α = 〈c,m, pc · u∗ · st∗ ·R]〉 :: L2 :: · · · :: Ln. By Proposition ?? we know that for

all j ≥ 2:
β`rLstInv(Lj , j, _,K, (lk

i)i) = β`rLstInv(Lj , j, _,K
′, (lk′i)i)

One can then show that the following sets satisfy the wanted property:
∗ DCall = β`rLst(〈c,m, pc + 1 · u∗ · st∗ ·R〉,K ′, (lk′n)n))
∗ DHeap = {H(λ′′, b̂′′) | H(`′′) = b′′ ∧ λ′′ = βLab(`′′) ∧ b̂′′ = βBlk(b

′′) ∧ `′′ ∈ dom(Reacha)}
∗ DPthr = T(λ, b̂)

3) We define:
∗ ∆Call = LStatec,m,pc+1((λ̂′t, û

′∗); lift(v̂′∗; k̂a); hlift(ĥ′; k̂a); k̂a t̂ k̂′)
∗ We define ∆Heap as follows: for all pp, if k̂a(pp) = 1 ∧ ĥ′(pp) 6= ⊥ then H(pp, ĥ′(pp)) ∈ ∆Heap.
∗ ` ∈ dom(K), therefore we know that ĥ(λ) = βLocBlk(b,K) 6= ⊥. From (??) and the definition of vR we get

that ĥ(λ)vBlk ĥ
′(λ). We define ∆Pthr = T(λ, ĥ′(λ)).

4) We are going to show that:
∗ DCall <: ∆Call. By applying Lemma ??.1 we get that:

β`rLst(〈c,m, pc + 1 · u∗ · st∗ ·R〉,K ′, (lk′n)n)) = LStatec,m,pc+1((λ̂t, û
∗); lift(v̂∗; k̂a); hlift(ĥ; k̂a); k̂a t̂ k̂)

Therefore we just have to prove that:

LStatec,m,pc+1((λ̂t, û
∗); lift(v̂∗; k̂a); hlift(ĥ; k̂a); k̂a t̂ k̂) (30)

vR LStatec,m,pc+1((λ̂′t, û
′∗); lift(v̂′∗; k̂a); hlift(ĥ′; k̂a); k̂a t̂ k̂′)

From Equation (??) we know that λ̂t = λ̂′t, û
∗vSeq û

′∗, v̂∗vSeq v̂
′∗, k̂vFilter k̂

′ and that ∀pp, ĥ(pp) 6= ⊥ =⇒
ĥ(pp)vBlk ĥ

′(pp). To show that Equation (??) holds we have four conditions to check:
· We already know that λ̂t = λ̂′t and û∗ vSeq û

′∗.
· Since v̂∗ vSeq v̂

′∗, we know by applying Proposition ?? that lift(v̂∗; k̂a)vSeq lift(v̂
′∗; k̂a).

· Since k̂ vFilter k̂
′, it is straightforward to check that k̂a t̂ k̂ vFilter k̂a t̂ k̂′.

· For all pp, by applying Proposition ?? we know that hlift(ĥ; k̂a)(pp)vBlk hlift(ĥ
′; k̂a)(pp).

∗ DHeap <: ∆Heap: we want to show that

∆Heap >: {H(λ′′, b̂′′) | H(`′′) = b′′ ∧ λ′′ = βLab(`′′) ∧ b̂′′ = βBlk(b
′′) ∧ `′′ ∈ dom(Reacha)}

Let H(λ, b̂) be an element of the right set of the above relation. We know that there exists b′′, `′′ such
that H(`′′) = b′′,λ′′ = βLab(`′′),b̂′′ = βBlk(b

′′) and `′′ ∈ dom(Reacha). Besides `′′ ∈ Reacha implies that
k̂a(λ′′) = 1. We have:

β`rLst(〈c,m, pc · u∗ · st∗ ·R〉,K, (lkn)n) = LStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂)

Therefore by definitions of β`rLst and of βLHeap we know that :

ĥ = {(pp 7→ βLocBlk (K(ppp),K)) | ppp ∈ dom(K)}
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Since (`′′ 7→ b′′) ∈ K we have ĥλ′′ = βLocBlk(b
′′,K). Besides by applying Proposition ?? we know that

βBlk(b
′′)vnfs

Blk βLocBlk(b
′′,K). In summary:

b̂′′ = βBlk(b
′′)vnfs

Blk βLocBlk(b
′′,K) = ĥ(λ′′) (31)

From Equation (??) we get that ∀pp, ĥ(pp) 6= ⊥ =⇒ ĥ(pp)vBlk ĥ
′(pp). Since (`′′ 7→ b′′) ∈ H , we know

that ĥ(λ′′) 6= ⊥, which implies that ĥ(λ′′)vBlk ĥ
′(λ′′). Putting Equation (??) together with this we get that

b̂′′ vnfs
Blk ĥ(λ′′)vnfs

Blk ĥ
′(λ′′).

We know that k̂a(λ′′) = 1. Besides ĥ(λ′′)vnfs
Blk ĥ

′(λ′′) and ĥ(λ′′) 6= ⊥ implies that ĥ′(λ′′) 6= ⊥. Therefore
H(λ′′, ĥ′(λ′′)) ∈ ∆Heap, which concludes this case.

∗ ` ∈ dom(K), therefore ĥ(λ) = βLocBlk(b,K) 6= ⊥. Hence by Equation (??) we know that ĥ(λ) vBlk ĥ
′(λ).

By Proposition ?? we know that b̂ = βBlk(b) vnfs
Blk βLocBlk(b,K) = ĥ(λ), and by Proposition ?? we get that

ĥ(λ)vnfs
Blk ĥ

′(λ). Therefore b̂vnfs
Blk ĥ

′(λ), which shows that DPthr <: ∆Pthr.
5) We are going to show that:
∗ (|P |) ∪∆ ` ∆Call: recall that LStatec,m,pc((λ̂′t, û

′∗); v̂′∗; ĥ′; k̂′) ∈ ∆ and that:

∆Call = LStatec,m,pc+1((λ̂′t, û
′∗); lift(v̂′∗; k̂a); hlift(ĥ′; k̂a); k̂a t̂ k̂′)

We know by Lemma ?? that βLocVal(ΣJriK,K) v v̂′i. Moreover since ΣJriK = ` ∈ dom(K) we have
FS(λ) = βLocVal(ΣJriK,K). We saw previously that βBlk(b) vnfs

Blk ĥ
′(λ), and since b = {|c′; (f 7→ w)∗|}, we

have ĥ′(λ) = {|c′; (f 7→ ŵ)∗|}. Hence we have the following abstract heap look-up fact:

` GetBlki(v̂
′∗; ĥ′;FS(λ); {|c′; (f 7→ ŵ)∗|})

Finally c′ ≤ Thread and ` Reach(FS(λ); ĥ′; k̂a), which allows us to apply the following rule, which is
included in (|P |):

LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) ∧ GetBlki(v̂

′∗; ĥ′;FS(λ); {|c′; (f 7→ ŵ)∗|}) ∧ Reach(FS(λ); ĥ′; k̂a)

∧ c′ ≤ Thread =⇒ LStatec,m,pc+1((λ̂′t, û
′∗); lift(v̂′∗; k̂a); hlift(ĥ′; k̂a); k̂′ t̂ k̂a)

This concludes this case.
∗ (|P |) ∪∆ ` ∆Heap: We can apply the following rule, which is in (|P |):

LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) ∧ GetBlki(v̂

′∗; ĥ′;FS(λ); {|c′; (f 7→ ŵ)∗|}) ∧ Reach(FS(λ); ĥ′; k̂a)

∧ c′ ≤ Thread =⇒ LiftHeap(ĥ′; k̂a) (32)

∆Heap is the set defined by: for all pp, if k̂a(pp) = 1 ∧ ĥ′(pp) 6= ⊥ then H(pp, ĥ′(pp)) ∈ ∆Heap. Let pp
satisfying those conditions. (|P |) contains the following rule:

LiftHeap(ĥ′; k̂a) ∧ ĥ′(pp) = b̂′′ ∧ k̂a(pp) = 1 =⇒ H(pp, b̂′′)

Rule Equation (??) plus the above rule yield (|P |) ∪∆ ` H(pp, ĥ′(pp)).
∗ (|P |) ∪∆ ` ∆Pthr: directly obtained by applying:

LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) ∧ GetBlki(v̂

′∗; ĥ′;FS(λ); {|c′; (f 7→ ŵ)∗|}) ∧ c′ ≤ Thread
=⇒ T(λ, {|c′; (f 7→ ŵ)∗|})

• (R-INTERRUPTWAIT)
(R-INTERRUPTWAIT)

H(`r) = {|λr; (fr 7→ ur)
∗, inte 7→ true|}

pc,m,pc 6∈ dom(H) o = {|cr; (fr 7→ ur)
∗, inte 7→ false|}

α = waiting(_, _) :: α0 oe = {|IntExcpt; |}
Σ ⇓ Σ[α 7→ AbNormal(α0[rexcpt 7→ `e]), H 7→ H[pc,m,pc 7→ oe, `r 7→ o]]

1) Let pp = c,m, pc. Let G′ = G[`r 7→ o]∪{(pc,m,pc 7→ oe)} and ((K ′i)i≤n,K
′, (lk′j)j) = ((Ki)i≤n,K, (lk

j)j). Since
(G, (Ki)i,K, (lk

j)j) is a local configuration decomposition of Σ, we know that `r ∈ dom(G). Besides pc,m,pc is
a fresh location, hence it is quite easy to check that (G′, (K ′i)i,K

′, (lk′j)j) is a local configuration decomposition
of Σ′, and that ∀i,Ki 6= K =⇒ Ki = K ′i.
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2) Let α = L1 :: . . . :: Ln. By Proposition ??.4 we know that for all i ≥ 2, Γi(K, (lkj)j) = Γi(K ′, (lk′j)j). Therefore
by Proposition ?? we know that for all j ≥ 2:

β`rLstInv(Lj , j, _,K, (lk
i)i) = β`rLstInv(Lj , j, _,K

′, (lk′i)i)

One can then show that the following definitions satisfy the wanted property:
– DCall = β`rALst(〈c,m, pc · u∗ · st∗ ·R[rexcpt 7→ pc,m,pc ]〉,K ′, (lk′n)n))
– DHeap = {H(βLab(`r), βBlk(o))} ∪ {H(βLab(pc,m,pc), βBlk(oe))}

3) We know that there exist LStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂) and LStatec,m,pc((λ̂′t, û

′∗); v̂′∗; ĥ′; k̂′) such that:

β`rLst(〈c,m, pc · u∗ · st∗ ·R〉,K, (lkn)n) = LStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂)vR LStatec,m,pc((λ̂′t, û

′∗); v̂′∗; ĥ′; k̂′) ∈ ∆
(33)

We define:
– ∆Call = AStatec,m,pc((λ̂′t, û

′∗); v̂′∗[excpt 7→ pp]; ĥ′; k̂′)
– Since X <: ∆ and `r ∈ dom(G) we know that there exists H(λr, b̂) ∈ ∆ such that H(`r)vnfs

Blk b̂. This implies
that b̂ = {|cr; (fr 7→ ûr)

∗, inte 7→ v̂i|} and that (βVal(ur))
∗ vnfs

Seq v̂
∗
r and βVal(true)vnfs v̂i. We define :

∆Heap = {H(λr, {|cr; (fr 7→ ûr)
∗, inte 7→ f̂alse|})} ∪ {H(pp; {|IntExcpt; |})}

4) Show that:
– DCall <: ∆Call: one can check that:

β`rALst(〈c,m, pc ·u∗ ·st∗ ·R[rexcpt 7→ pc,m,pc ]〉,K ′, (lk′n)n)) = AStatec,m,pc((λ̂t, û
∗); v̂∗[excpt 7→ pp]; ĥ; k̂) (34)

From Equation (??) we know that:

LStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂)vR LStatec,m,pc((λ̂′t, û

′∗); v̂′∗; ĥ′; k̂′)

This implies that:

LStatec,m,pc((λ̂t, û
∗); v̂∗[excpt 7→ pp]; ĥ; k̂)vR LStatec,m,pc((λ̂′t, û

′∗); v̂′∗[excpt 7→ pp]; ĥ′; k̂′)

Hence by definition of vA we have:

AStatec,m,pc((λ̂t, û
∗); v̂∗[excpt 7→ pp]; ĥ; k̂)vA AStatec,m,pc((λ̂′t, û

′∗); v̂′∗[excpt 7→ pp]; ĥ′; k̂′)

Equation (??) and the above relation shows that DCall <: ∆Call.
– DHeap <: ∆Heap: we know that (βVal(ur))

∗vnfs
Seq û

∗
r . Besides βVal(false)vnfs f̂alse , therefore we have βBlk(o)vnfs

Blk

{|cr; (fr 7→ ûr)
∗, inte 7→ f̂alse|}), which in turn implies that :

{H(βLab(`r), βBlk(o))} <: {H(λr, {|cr; (fr 7→ ûr)
∗|}} ⊆ ∆Heap

The fact that {H(βLab(`r), βBlk(oe))} <: {H(pp; {|IntExcpt; |})} ⊆ ∆Heap is trivial.
5) By definition of βLst, we get from Equation (??) that λ̂t = βVal(`r) = NFS(λr), and that λ̂t = λ̂′t. Besides we

know that H(λr, b̂) ∈ ∆, where b̂ = {|cr; (fr 7→ ûr)
∗, inte 7→ v̂i|} and βVal(true) = t̂rue vnfs v̂i, which implies that

t̂rue v v̂i. Moreover Equation (??) gives us that LStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) ∈ ∆, therefore we have :

∆ ` LStatec,m,pc((NFS(λr), û
′∗); v̂′∗; ĥ′; k̂′) ∧ H(λr, {|cr; (fr 7→ ûr)

∗, inte 7→ v̂i|}) ∧ t̂rue v v̂i (35)

Since Σ is well-formed, and since L1 = waiting(_, _) we know that stpc = wait _ . Therefore (|P |) contains the
following rules:

LStatepp((NFS(λr), û
′∗); v̂′∗; ĥ′; k̂′) ∧ H(λr, {|cr; (fr 7→ ûr)

∗, inte 7→ v̂i|}) ∧ t̂rue v v̂i
=⇒ AStatepp((NFS(λr), û

′∗); v̂′∗[excpt 7→ pp]; ĥ′; k̂′) (36)

LStatepp((NFS(λr), û
′∗); v̂′∗; ĥ′; k̂′) ∧ H(λr, {|cr; (fr 7→ ûr)

∗, inte 7→ v̂i|}) ∧ t̂rue v v̂i
=⇒ H(λr, {|c′; (f 7→ û)∗, inte 7→ f̂alse|}) (37)

LStatepp((NFS(λr), û
′∗); v̂′∗; ĥ′; k̂′) ∧ H(λr, {|cr; (fr 7→ ûr)

∗, inte 7→ v̂i|}) ∧ t̂rue v v̂i
=⇒ H(pp; {|IntExcpt; |}) (38)
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– (|P |) ∪∆ ` ∆Call: this is trivially implied by Equation (??) and Equation (??).
– (|P |)∪∆ ` ∆Heap: Equation (??) and Equation (??) gives us that (|P |)∪∆ ` H(λr, {|c′; (f 7→ û)∗, inte 7→ f̂alse|}),

and abstract fact H(pp; {|IntExcpt; |}) is obtained by Equation (??).
• (R-CAUGHT)

(R-CAUGHT)
` = ΣJrexcptK H(`) = {|c′; (f 7→ v)∗|}

ExcptTable(c,m, pc, c′) = pc′ α′ = 〈c,m, pc′ · _ · _ ·R〉 :: α0

Σ ⇓ Σ[α 7→ α′]

Here call-stack is abnormal and of the form α = AbNormal(〈c,m, pc · u∗ · st∗ ·R〉 :: α0).
1) We take (G′, (K ′i)i,K

′, (lk′j)j) = (G, (Ki)i,K, (lk
j)j). It is trivially a local configuration decomposition of Σ′,

and ∀i,Ki 6= K =⇒ Ki = K ′i
2) Let L1 :: . . . :: Ln = AbNormal(〈c,m, pc · u∗ · st∗ · R〉 :: α0). By Proposition ??.4 we know that for all i ≥ 2,

Γi(K, (lkj)j) = Γi(K ′, (lk′j)j). Therefore by Proposition ?? we know that for all j ≥ 2:

β`rLstInv(Lj , j, _,K, (lk
i)i) = β`rLstInv(Lj , j, _,K

′, (lk′i)i)

One can then show that DCall = β`rALst(〈c,m, pc′ · u∗ · st∗ ·R〉,K ′, (lk′n)n)) satisfies the wanted property.
3) We know that there exist AStatec,m,pc((λ̂t, û

∗); v̂∗; ĥ; k̂) and AStatec,m,pc((λ̂′t, û
′∗); v̂′∗; ĥ′; k̂′) such that:

β`rALst(〈c,m, pc ·u∗ · st∗ ·R〉,K, (lkn)n) = AStatec,m,pc((λ̂t, û
∗); v̂∗; ĥ; k̂)vA AStatec,m,pc((λ̂′t, û

′∗); v̂′∗; ĥ′; k̂′) ∈ ∆
(39)

We take ∆Call = LStatec,m,pc′((λ̂
′
t, û
′∗); v̂′∗; ĥ′; k̂′).

4) DCall <: ∆Call: this is a trivial consequence of Equation (??).
5) We want to show that (|P |)∪∆ ` ∆Call. First recall that ExcptTable(c,m, pc, c′) = pc′, hence c′ ≤ Throwable by

Assumption ??. We know by Lemma ?? that βLocVal(`,K)v v̂′excpt. Let λ = βLab(`).
– If ` ∈ dom(G) then we have βLocVal(`,K) = NFS(λ). Moreover since X <: ∆ we know that there exists
H(λ, {|c′; (f 7→ ŵ)∗|}) ∈ ∆. Therefore we have:

∆ ` GetBlkexcpt(v̂
′∗; ĥ′;NFS(λ); {|c′; (f 7→ ŵ)∗|}) ∧ c′ ≤ Throwable

– If ` ∈ dom(K) then we have βLocVal(ΣJrexcptK,K) = FS(λ). Since ` ∈ dom(K), we know that ĥ(λ) =

βLocBlk(H(`),K) 6= ⊥. Therefore from Equation (??) we get that ĥ(λ) vBlk ĥ
′(λ), which in turns implies that

ĥ′(λ) = {|c′; (f 7→ ŵ)∗|}. Hence we have:

∆ ` GetBlkexcpt(v̂
′∗; ĥ′;FS(λ); {|c′; (f 7→ ŵ)∗|}) ∧ c′ ≤ Throwable

In both case we can apply the rule below, which is included in (|P |):

AStatec,m,pc(û′∗; v̂′∗; ĥ′; k̂′) ∧ GetBlkexcpt(v̂
′∗; ĥ′; _; {|c′; (f 7→ ŵ)∗|}) ∧ c′ ≤ Throwable

=⇒ LStatec,m,pc′(û
′∗; v̂′∗; ĥ′; k̂′)

This concludes this case.
• (R-UNCAUGHT)

(R-UNCAUGHT)
` = ΣJrexcptK

H(`) = {|ce; (f 7→ v)∗|} ExcptTable(c,m, pc, ce) = ⊥
Σ ⇓ Σ[α 7→ AbNormal(α0[rexcpt 7→ `])]

Here the call-stack is abnormal α = AbNormal(〈c,m, pc · u∗ · st∗ ·R〉 :: α0). If α0 is the empty list, then this case
is easy. Hence we assume that :

α = AbNormal(〈c,m, pc · v∗ · st∗ ·R〉 :: 〈c′,m′, pc′ · u′∗ · st ′∗ ·R′〉 :: α1)

α′ = AbNormal(〈c′,m′, pc′ · u′∗ · st ′∗ ·R′[rexcpt 7→ `]〉 :: α1)

1) Let G′, (K ′i)i = G, (Ki)i and (lk′j)j = (lk1 tloc lk2) :: (lki)i>2.
The proof that (G′, (K ′i)i,K

′, (lk′j)j) is a local configuration decomposition of Σ′ is the same than in the (R-
RETURN) case.
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2) By Proposition ?? we get for all j ≥ 1:

β`rLstInv(αj , j, _,K, (lk
i)i) = β`rLstInv(αj , j, _,K

′, (lk′i)i)

One can then check that:

DCall = β`rALst(〈c
′,m′, pc′ · u′∗ · st ′∗ ·R′[rexcpt 7→ `]〉,K ′, (lk′j)j)

3) We know that:

β`rALst(〈c,m, pc · u∗ · st∗ ·R〉,K, (lkj)j) = AStatec,m,pc((λ̂t, û
∗
1); v̂∗1 ; ĥ1; k̂1) (40)

vR AStatec,m,pc((ŵ
′
1, û
′∗
1 ); v̂′∗1 ; ĥ′1; k̂′1) ∈ ∆

β`rLstInv(〈c′,m′, pc′ · u′∗ · st ′∗ ·R′〉, 2, c,K, (lkj)j) = Invcc′,m′,pc′((λ̂t, û
∗
2); v̂∗2 ; k̂2) (41)

v∆
Inv LStatec′,m′,pc′((ŵ

′
2, û
′∗
2 ); v̂′∗2 ; ĥ′2; k̂′2) ∈ ∆

Let ∆Call = AStatec′,m′,pc′((ŵ
′
2, û
′∗
2 ); lift(v̂′∗2 ; k̂′1)[excpt 7→ (v̂′∗1 )excpt]; ĥ

′
1; k̂′1 t̂ k̂′2).

4) The proof that DCall <: ∆ ∪∆Call is exactly the same than in the (R-RETURN) case.
5) We are going to show that (|P |) ∪∆ ` ∆Call. Since ExcptTable(c,m, pc, ce) = ⊥ we know that ce ≤ Throwable

by Assumption ??. Therefore we have the following rule in (|P |):

AStatec,m,pc((ŵ′1, û
′∗
1 ); v̂′∗1 ; ĥ′1; k̂′1) ∧ GetBlkexcpt(v̂

′∗
1 ; ĥ′1; _; {|ce; _|}) ∧ ce ≤ Throwable

=⇒ Uncaughtc,m((ŵ′1, û
′∗
1 ); (v̂′∗1 )excpt; ĥ

′
1; k̂′1)

As it was done in (R-CAUGHT), one can show that:

∆ ` GetBlkexcpt(v̂
′∗
1 ; ĥ′1; _; {|ce; _|}) ∧ ce ≤ Throwable

Therefore ∆ ` Uncaughtc,m((ŵ′1, û
′∗
1 ); λ̂; ĥ′1; k̂′1).

By well-formedness of Σ we know that sign(c′,m′) = (τi)i≤n
loc−−→ τ , st′pc′ = invoke ro m (rji)i≤n and

u∗ = (R′(rji)))i≤n. By using the same reasoning that we did in (R-RETURN) we can show that:

∆ ` GetBlko(v̂
′∗
2 ; ĥ′2; _; {|c′′; _|}) ∧ c′′ ≤ c′ ∧ ŵ′1 = ŵ′2 ∧

(∧
j≤n

(v̂′∗2 )ij u (û′∗1 )j 6= ⊥
)

Hence we can apply the following rule, which is included in (|P |):

LStatec′,m′,pc′((ŵ
′
2, û
′∗
2 ); v̂′∗2 ; ĥ′2; k̂′2) ∧ GetBlko(v̂

′∗
2 ; ĥ′2; _; {|c′′; _|}) ∧ c′′ ≤ c′

∧ Uncaughtc,m((ŵ′1, û
′∗
1 ); (v̂′∗1 )excpt; ĥ

′
1; k̂′1) ∧ ŵ′1 = ŵ′2 ∧

(∧
j≤n

(v̂′∗2 )ij u (û′∗1 )j 6= ⊥
)

=⇒ LStatec′,m′,pc′((ŵ
′
2, û
′
2); lift(v̂′∗2 ; k̂′1)[excpt 7→ (v̂′∗1 )excpt]; ĥ

′
1; k̂′1 t̂ k̂′2)

This shows that (|P |) ∪∆ ` ∆Call.
• Remaining cases The remaining cases are straightforward or very similar to cases we already analyzed. For example:

– (R-SCALL): Similar to the (R-CALL) case
– (R-NEWINTENT): Similar to the (R-NEWOBJ) case
– (R-NEWARR): Similar to the (R-NEWOBJ) case
– (R-MOVESFLD): Similar to the (R-MOVEFLD) case
– (R-MOVEARR): Similar to the (R-MOVEFLD) case
– (R-PUTEXTRA): Similar to the (R-MOVEFLD) case
– (R-MOVEEXCEPTION) Similar to the (R-MOVEFLD) case
– (R-INTERRUPTJOIN): Similar to the (R-INTERRUPTWAIT) case
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L. Proof of Lemma ??
Proof: If Ψ = Ψ′ then it suffices the take ∆ = ∆′.

We are just going to prove that this is true if Ψ reduces to Ψ′ in one step. The lemma’s proof is then obtained by a
straightforward induction on the reduction length.

Let X ∈ βCnf(Ψ) with (G, (Ki, (lk
i,j)j)i) its configuration decomposition.

• Rule applied is (A-ACTIVE):

(A-ACTIVE)
` · α · π · γ ·H · S  ` · α′ · π′ · γ′ ·H ′ · S′

Ω :: 〈`, s, π, γ, α〉 :: Ω′ · Ξ ·H · S ⇒ Ω :: 〈`, s, π′, γ′, α′〉 :: Ω′ · Ξ ·H ′ · S′

We know that:
X = βGStk(Ω :: 〈`, s, π, γ, α〉 :: Ω′,Ξ, (Kl, (lk

l,j)j)l) ∪ βGHeap(H) ∪ βStat(S)

and that :
βGFrm(〈`, s, π, γ, α〉,Kn, (lk

n,j)j) ⊆ βGStk(Ω :: 〈`, s, π, γ, α〉 :: Ω′,Ξ, (Kl, (lk
l,j)j)l)

Moreover (G, (Ki)i,Kn, (lk
n,j)j) is a local configuration decomposition of ` · α · π · γ · H · S. We define Xloc as

follows:

Xloc = βGFrm(〈`, s, π, γ, α〉,Kn, (lk
n,j)j) ∪ βGHeap(H) ∪ βStat(S)

= β`Call(α,Kn, (lk
n,j)j) ∪ β`Pact(π) ∪ βGPthr(γ) ∪ βGHeap(H) ∪ βStat(S)

∈ βLcnf(` · α · π · γ ·H · S)

Therefore we know that Xloc ∈ βLcnf(` ·α ·π ·γ ·H ·S) with local configuration decomposition G, (Ki)i,Kn, (lk
n,j)j .

Besides Xloc ⊆ X , hence by Lemma ?? we have Xloc <: ∆. By Lemma ?? we know that there exists ∆′loc
and X ′loc ∈ βLcnf(` · α′ · π′ · γ′ · H ′ · S′) with local configuration decomposition G, (Ki)

′
i,K

′
n, (lk

′n,j)j such that
∀i 6= n,Ki = K ′i, ∆′loc :> X ′loc and (|P |) ∪∆ ` ∆′loc.
For all j and l 6= n, let lk′l,j = lkl,j . Then it is quite easy to check that (G′, (K ′i, (lk

′i,j)j)i) is a configuration
decomposition of Ψ′. We define X ′ by:

X ′ = βG
′

Stk (Ω :: 〈`, s, π′, γ′, α′〉 :: Ω′,Ξ, (K ′l , (lk
′l,j)j)l) ∪ βG

′

Heap(H ′) ∪ βStat(S
′)

Let n be such that Ω is of length n− 1, n′ be the length of Ω′ and m be the length of Ξ. We know that:

βG
′

Stk (Ω :: 〈`, s, π′, γ′, α′〉 :: Ω′,Ξ, (K ′l , (lk
′l,j)j)l)\βG

′

Frm(〈`, s, π′, γ′, α′〉,K ′n, (lk
′n,j)j)

=

(
n−1⋃
l=1

βG
′

Frm(Ωl,K
′
l , (lk

′l,j)j)

)
∪

 n′⋃
l=1

βG
′

Frm(Ω′l,K
′
l+n, (lk

′l+n,j)j)

 ∪( m⋃
l=1

βG
′

Frm(Ξl,K
′
l+n+n′ , (lk

′l+n+n′,j)j)

)
which by Proposition ?? is equal to

=

(
n−1⋃
l=1

βGFrm(Ωl,Kl, (lk
l,j)j)

)
∪

 n′⋃
l=1

βGFrm(Ω′l,Kl+n, (lk
l+n,j)j)

 ∪( m⋃
l=1

βGFrm(Ξl,Kl+n+n′ , (lk
l+n+n′,j)j)

)
Which implies that:

X ′\X ⊆ βG
′

Frm(〈`, s, π′, γ′, α′〉,K ′n, (lk
′n,j)j) ∪ βG

′

Heap(H ′) ∪ βStat(S
′) = X ′loc

We define ∆′ = ∆ ∪∆′loc.We know that X <: ∆ and X ′loc <: ∆′loc, therefore by Lemma ?? we have X ∪X ′loc <:
∆ ∪∆′loc = ∆′. Moreover X ′ ⊆ X ∪X ′loc, therefore by Lemma ?? we have X ′ <: ∆′. We conclude by observing
that since (|P |) ∪∆ ` ∆′loc, we trivially have (|P |) ∪∆ ` ∆′.

• Rule applied is (A-DEACTIVATE):

(A-DEACTIVATE)

Ω :: 〈`, s, π, γ, α〉 :: Ω′ · Ξ ·H · S ⇒ Ω :: 〈`, s, π, γ, α〉 :: Ω′ · Ξ ·H · S

In this case βCnf(Ω :: 〈`, s, π, γ, α〉 :: Ω′ · Ξ ·H · S) = βCnf(Ω :: 〈`, s, π, γ, α〉 :: Ω′ · Ξ ·H · S), hence the conclusion
immediately follows from the induction hypothesis.
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• Rule applied is (A-STEP):
(A-STEP)

(s, s′) ∈ Lifecycle π 6= ε⇒ (s, s′) = (running, onPause)
H(`).finished = true ⇒ (s, s′) ∈ {(running, onPause), (onPause, onStop), (onStop, onDestroy)}

〈`, s, π, γ, α〉 :: Ω · Ξ ·H · S ⇒ 〈`, s′, π, γ, α`.s′〉 :: Ω · Ξ ·H · S

We have:
X = βGStk(〈`, s, π, γ, α〉 :: Ω,Ξ, (Kl, (lk

l,j)j)l) ∪ βGHeap(H) ∪ βStat(S)

Since we only focus on well-formed configurations, we have H(`) = {|c; (f 7→ u)∗|} for some activity class c and
` = pc for some pointer p. We then observe that α`.s′ = 〈c′,m, 0 · v∗ · st∗ · R〉 :: ε, where (c′, st∗) = lookup(c,m)

for some m ∈ cb(c, s), sign(c′,m) = τ1, . . . , τn
loc−−→ τ and:

R = ((ri 7→ 0)i≤loc , rloc+1 7→ `, (rloc+1+j 7→ vj)
j≤n)

for some values v1, . . . , vn of the correct type τ1, . . . , τn. By Assumption ??, we also have c ≤ c′.
Given that ∆ :> X ∈ βCnf(Ψ), we have ∆ :> βGHeap(H). We know that ` = pc ∈ dom(H), and since local heaps
contain only locations whose annotations are program points, we know that ` ∈ dom(G). Therefore there exists
H(λ, b̂) ∈ ∆ such that λ = βLab(`) = c and βBlk({|c; (f 7→ u)∗|}) vnfs

Blk b̂. This implies that b̂ = {|c; (f 7→ v̂)∗|} for
some v̂∗ such that ∀i, βVal(ui)vnfs v̂i. Hence using the implications Cbk included in (|P |) we get that:

(|P |) ∪∆ ` LStatec′,m,0((NFS(c), (>τj )j≤n); (0̂k)k≤loc ,NFS(c), (>τj )j≤n; (⊥)∗; 0∗) (42)

Let ∆′ = ∆ ∪ {LStatec′,m,0((NFS(c), (>τj )j≤n); (0̂k)k≤loc ,NFS(c), (>τj )j≤n; (⊥)∗; 0∗)}. From Equation ?? we get
that (|P |) ∪∆ ` ∆′.
Let G′ = G, for all i > 1 let K ′i = Ki and for all j > 1, (lk′l,j)j = (lkl,j)j . Let also K ′1 be a fresh empty local
heap and (lk′1,j)j = ({(` 7→ 0) | `}) :: ε. Using Assumption ??, it is simple to show that (G′, (K ′i, (lk

′i,j)j)i) is a
configuration decomposition of 〈`, s′, π, γ, α`.s′〉 :: Ω · Ξ ·H · S, and that:

∆′ >: {LStatec′,m,0((NFS(c), (>τj )j≤n); (0̂k)k≤loc ,NFS(c), (>τj )j≤n; (⊥)∗; 0∗)} :> β`Call(α`.s′ ,K
′
1, (lk

′1,j)j) (43)

Observe that βGPthr(γ) = βG
′

Pthr(γ). Besides ∆ :> βCnf(Ω ·Ξ ·H ·S) implies that β`Pact(π)∪βGPthr(γ) <: ∆, and we know
that since ∆ ⊆ ∆′ we have ∆ <: ∆′. Therefore by transitivity of <: we have :

β`Pact(π) ∪ βG
′

Pthr(γ) <: ∆′ (44)

It is easy to check that X ′ ∈ βCnf(Ψ
′), where X ′ is the following set of facts:

X ′ = βG
′

Stk (〈`, s′, π, γ, α`.s′〉 :: Ω,Ξ, (K ′l , (lk
′l,j)j)l) ∪ βGHeap(H) ∪ βStat(S)

Using Proposition ??, one can check that:

X ′\X = β`Call(α`.s′ ,K
′
1, (lk

′1,j)j) ∪ β`Pact(π) ∪ βG
′

Pthr(γ)

Equation ?? and Equation ?? give us that X ′\X <: ∆′. We conclude by observing that since X <: ∆ <: ∆′ and
X ′ ⊆ X ∪ (X ′\X), we have X ′ <: ∆′.

• Rule applied is (A-HIDDEN):
(A-HIDDEN)
ϕ = 〈`, s, π, γ, α〉 s ∈ {onResume, onPause} (s′, s′′) ∈ {(onPause, onStop), (onStop, onDestroy)}

ϕ :: Ω :: 〈`′, s′, π′, γ′, α′〉 :: Ω′ · Ξ ·H · S ⇒ ϕ :: Ω :: 〈`′, s′′, π′, γ′, α`′.s′′〉 :: Ω′ · Ξ ·H · S

This case is analogous to the case (A-STEP).
• Rule applied is (A-DESTROY):

(A-DESTROY)
H(`).finished = true

Ω :: 〈`, onDestroy, π, γ, α〉 :: Ω′ · Ξ ·H · S ⇒ Ω :: Ω′ · Ξ ·H · S

Let n be the length of Ω. It is easy to check that (G ∪ Kn, (Kl, (lk
l,j)j)l 6=n) is a configuration decomposition of

Ω :: Ω′ · Ξ ·H · S, and that X ′ ∈ βCnf(Ψ
′) where:

X ′ = βG∪Kn

Stk (Ω :: Ω′,Ξ, (Kl, (lk
l,j)j)l 6=n) ∪ βGHeap(H) ∪ βStat(S) ⊆ X



61

Since X <: ∆, this implies that X ′ <: ∆. We conclude with the trivial observation that (|P |) ∪∆ ` ∆.
• Rule applied is (A-BACK):

(A-BACK)
H ′ = H[` 7→ H(`)[finished 7→ true]]

〈`, running, ε, γ, α〉 :: Ω · Ξ ·H · S ⇒ 〈`, running, ε, γ, α〉 :: Ω · Ξ ·H ′ · S
Let b = H(`). Since we only focus on well-formed configurations, we have b = {|c; (f 7→ u)∗, finished 7→ v|} for
some activity class c and some boolean value v. Let then b′ = H ′(`) = {|c; (f 7→ u)∗, finished 7→ true|} according
to the reduction rule.
Given that ∆ :> X ∈ βCnf(Ψ), we have ∆ :> βGHeap(H). We know that ` = pc ∈ dom(H), and since local
heaps contain only locations whose annotations are program points, we know that ` ∈ dom(G). Therefore there
exists H(λ, b̂) ∈ ∆ such that λ = βLab(`) = c and βBlk({|c; (f 7→ u)∗, finished 7→ v|}) vnfs

Blk b̂. This implies that
b̂ = {|c; (f 7→ û)∗, finished 7→ v̂|} for some û∗, v̂ such that ∀i, βVal(ui)vnfs ûi and βVal(v)vnfs v̂. It is easy to check
that:

βBlk(b
′) = {|c; (f 7→ βVal(u))∗, finished 7→ t̂rue|}

We define ∆′ = ∆∪{H(λ, {|c; (f 7→ û)∗, finished 7→ >bool|})}. Since H(λ, b̂) ∈ ∆ we have by using the implication
Fin in (|P |) that:

(|P |) ∪∆ ` H(λ, {|c; (f 7→ û)∗, finished 7→ >bool|})

Therefore (|P |) ∪∆ ` ∆′. We then observe that:

H(βLab(`), βBlk(b
′)) vnfs

Blk H(λ, {|c; (f 7→ û)∗, finished 7→ t̂rue|})
vnfs

Blk H(λ, {|c; (f 7→ û)∗, finished 7→ >bool|})

Hence βGHeap(H ′) <: ∆′. It is then easy to conclude this case.
• Rule applied is (A-SWAP):

(A-SWAP)
ϕ′ = 〈`′, onPause, ε, γ′, α′〉

H(`′).finished = true ϕ = 〈`, s, i :: π, γ, α〉 s ∈ {onPause, onStop} H(`′).parent = `

ϕ′ :: ϕ :: Ω · Ξ ·H · S ⇒ ϕ :: ϕ′ :: Ω · Ξ ·H · S

Just take G′ = G,K ′1 = K2,K
′
2 = K1, for all j, lk′1,j = lk2,j , lk′2,j = lk1,j (we simply exchange the first local heap

and filters with the second local heap and filters). The rest is kept unchanged: for all l > 2, for all j, K ′i = Ki and
lk′l,j = lkl,j .
It is quite simple to check that (G, (Ki, (lk

i,j)j)i) is a configuration decomposition and that the corresponding set of
abstract facts are the same.
Therefore βCnf(Ψ) = βCnf(Ψ

′), which concludes this case.
• Rule applied is (A-START):

(A-START)
s ∈ {onPause, onStop} i = {|@c; (k 7→ v)∗|} ∅ ` serHBlk(i) = (i′, H ′) pc, p

′
in(c) 6∈ dom(H,H ′)

o = {|c; (fτ 7→ 0τ )∗, finished 7→ false, intent 7→ p′in(c),parent 7→ `|} H ′′ = H,H ′, pc 7→ o, p′in(c) 7→ i′

〈`, s, i :: π, γ, α〉 :: Ω · Ξ ·H · S ⇒ 〈pc, constructor, ε, ε, αpc.constructor〉 :: 〈`, s, π, γ, α〉 :: Ω · Ξ ·H ′′ · S

Since we only focus on well-formed configurations, we know that ` = p′′c′′ for some pointer p′′ and some activity
class c′′. We then observe that αpc.constructor = 〈c′,m, 0 · v∗ · st∗ · R〉 :: ε, where (c′, st∗) = lookup(c, constructor),
sign(c′, constructor) = τ1, . . . , τn

loc−−→ τ and:

R = ((ri 7→ 0)i≤loc , rloc+1 7→ pc, (rloc+1+j 7→ v′j)
j≤n),

for some values v′1, . . . , v
′
n of the correct type τ1, . . . , τn. By Assumption ??, we also have c ≤ c′.

Given that X <: ∆, we have ∆ :> β`Pact(i :: π), which implies that there exists Iλ(b̂) ∈ ∆ such that λ = βLab(`) = c′

and βBlk(i)vnfs
Blk b̂. This implies that b̂ = {|@c; v̂|} for some v̂ such that ti βVal(vi)vnfs v̂. Using the implications Act

in (|P |) we get:

(|P |) ∪∆ ` H(in(c), {|@c; v̂|}) (45)

(|P |) ∪∆ ` H(c, {|c; (f 7→ 0̂τ )∗, finished 7→ f̂alse,parent 7→ c′, intent 7→ in(c)|}) (46)
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Hence using the implications Cbk included in (|P |) we get that:

(|P |) ∪ {H(c, {|c; (f 7→ 0̂τ )∗, finished 7→ f̂alse,parent 7→ c′, intent 7→ in(c)|})}
` LStatec′,m,0((NFS(c), (>τj )j≤n); (0̂k)k≤loc ,NFS(c), (>τj )j≤n; (⊥)∗; 0∗) (47)

We define the set of abstract fact:

∆′ = ∆ ∪ {LStatec′,m,0((NFS(c), (>τj )j≤n); (0̂k)k≤loc ,NFS(c), (>τj )j≤n; (⊥)∗; 0∗)} ∪ {H(in(c), {|@c; v̂|})}

∪ {H(c, {|c; (f 7→ 0̂τ )∗, finished 7→ f̂alse,parent 7→ c′, intent 7→ in(c)|})}

From Equation ??, Equation ?? and Equation ?? we get that (|P |) ∪∆ ` ∆′.
a) Configuration Decomposition: Let K ′0 be an fresh empty local heap. We take G′ = G ∪ H ′ ∪ {pc, p′in(c)},
(K ′l)l = K ′0 :: (K)l and (lk′l,j)l,j = (({(` 7→ 0) | `}) :: ε) :: (lkl,j)l,j .
Since (G, (Ki),K1, (lk

1,j)j) is a local configuration decomposition of ` · α · (i :: π) · γ ·H · S, we know that there
exists `′ such that (`′ 7→ i) ∈ G. Moreover ∆ :> βGHeap(H) and serHBlk(i) = (i′, H ′), therefore by applying Lemma ??
we know that ∆ :> βGHeap(H ′) and that G ∪H ′, (Ki)i is a heap decomposition of H ∪H ′ · S.
Since ` = p′′c we know that ` ∈ G, hence for all i, o 6→ref Ki. By Lemma ?? we know that for all i, i 6→ref Ki.
Moreover pc and p′in(c) are fresh locations, therefore G′, (Ki)i is a heap decomposition of H ′′ ·S. Since K ′0 is a fresh
empty local heap we easily get from this that G′, (K ′i)i is a heap decomposition of H ′′ · S.
Using Assumption ??, it is simple to check that (G′, (K ′i, (lk

′i,j)j)i) is a configuration decomposition of Ψ′.
Let X ′ be the corresponding set of facts:

βG
′

Stk (〈pc, constructor, ε, ε, αpc.constructor〉 :: 〈`, s, π, γ, α〉 :: Ω,Ξ, (K ′l , (lk
′l,j)j)l) ∪ βG

′

Heap(H ′′) ∪ βStat(S)

We are going to prove that X ′ is over-approximated by the set of abstract facts ∆′.
b) Heap: We already saw that ∆ :> βGHeap(H ′), and by applying Lemma ?? we know that βBlk(i) = βBlk(i

′). We then
observe that:

{H(in(c), {|@c; v̂|})} :> {H(in(c), βBlk(i)} since βBlk(i)vnfs
Blk b̂ = {|@c; v̂|})

= {H(in(c), βBlk(i
′)} since βBlk(i) = βBlk(i

′)
= {H(βLab(p′in(c)), βBlk(i

′)} by definition
(48)

Also notice that:

{H(c, {|c; (f 7→ 0̂τ )∗, finished 7→ f̂alse,parent 7→ c′, intent 7→ in(c)|})} = H(βLab(pc), βBlk(o)) (49)

Moreover it is simple to see that we have:

βG
′

Heap(H ′′) = βGHeap(H) ∪ βG∪H
′

Heap (H ′) ∪ {H(βLab(pc), βBlk(o))} ∪ {{H(βLab(p′in(c)), βBlk(i
′)}}

We already saw that βG∪H
′

Heap (H ′) <: ∆ <: ∆′. This together with Equation ?? and Equation ?? shows that βG
′

Heap(H ′′) <:
∆′.
c) Activity Stack: Let n be the length of Ω, and let m be the length of Ξ.

βG
′

Stk (〈pc, constructor, ε, ε, αpc.constructor〉 :: 〈`, s, π, γ, α〉 :: Ω,Ξ, (K ′l , (lk
′l,j)j)l)

= βG
′

Frm(〈pc, constructor, ε, ε, αpc.constructor〉,K ′0, (lk
′0,j)j) ∪ βG

′

Frm(〈`, s, π, γ, α〉,K ′1, (lk
′1,j)j)

∪

 ⋃
1≤l≤n

βG
′

Frm(Ωl,K
′
l+1, (lk

′l+1,j)j)

 ∪
 ⋃

1≤l≤m

βG
′

Frm(Ξl,K
′
l+n+1, (lk

′l+n+1,j)j)


By Proposition ?? this is equal to:

βG
′

Frm(〈pc, constructor, ε, ε, αpc.constructor〉,K ′0, (lk
′0,j)j) ∪ βGFrm(〈`, s, π, γ, α〉,K1, (lk

1,j)j)

∪

 ⋃
1≤l≤n

βGFrm(Ωl,Kl+1, (lk
l+1,j)j)

 ∪
 ⋃

1≤l≤m

βGFrm(Ξl,Kl+n+1, (lk
l+n+1,j)j)
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We then observe that:

∆′ :> {LStatec′,m,0((NFS(c), (>τj )j≤n); (0̂k)k≤loc ,NFS(c), (>τj )j≤n; (⊥)∗; 0∗)}
:> βG

′

Frm(〈pc, constructor, ε, ε, αpc.constructor〉,K ′0, (lk
′0,j)0,j)

This proves that the changes to the activity stack are over-approximated by ∆′.
• Rule applied is (A-REPLACE):

(A-REPLACE)
H(`) = {|c; (fτ 7→ v)∗, finished 7→ u|}

pc 6∈ dom(H) o = {|c; (fτ 7→ 0τ )∗, finished 7→ false|} H ′ = H, pc 7→ o

〈`, onDestroy, π, γ, α〉 :: Ω · Ξ ·H · S ⇒ 〈pc, constructor, π, γ, αpc.constructor〉 :: Ω · Ξ ·H ′ · S

Since we only focus on well-formed configurations, we know that c is an activity class and ` = p′c for some pointer
p′.
We then observe that αpc.constructor = 〈c′,m, 0 · v∗ · st∗ · R〉 :: ε, where (c′, st∗) = lookup(c, constructor),
sign(c′, constructor) = τ1, . . . , τn

loc−−→ τ and:

R = ((ri 7→ 0)i≤loc , rloc+1 7→ pc, (rloc+1+j 7→ v′j)
j≤n),

for some values v′1, . . . , v
′
n of the correct type τ1, . . . , τn. By Assumption ??, we also have c ≤ c′.

Given that ∆ :> X ∈ βCnf(Ψ), we have ∆ :> βGHeap(H). We know that ` = p′c ∈ dom(H), and since local
heaps contain only locations whose annotations are program points, we know that ` ∈ dom(G). Therefore there
exists H(λ, b̂) ∈ ∆ such that λ = βLab(`) = c and βBlk({|c; (f 7→ v)∗, finished 7→ u|}) vnfs

Blk b̂. This implies that
b̂ = {|c; (f 7→ v̂)∗, finished 7→ û|} for some v̂∗, û such that ∀i, βVal(vi) vnfs v̂i and βVal(u) vnfs û. Hence using the
implications Cbk and Rep5 included in (|P |) we get that:

(|P |) ∪∆ ` LStatec′,m,0((NFS(c), (>τj )j≤n); (0̂k)k≤loc ,NFS(c), (>τj )j≤n; (⊥)∗; 0∗) (50)

(|P |) ∪∆ ` H(c, {|c; (f 7→ 0̂τ )∗, finished 7→ f̂alse|})) (51)

We define the set of abstract ∆′ by:

∆′ = ∆ ∪
{
LStatec′,m,0((NFS(c), (>τj )j≤n); (0̂k)k≤loc ,NFS(c), (>τj )j≤n; (⊥)∗; 0∗)

}
∪

{
H(c, {|c; (f 7→ 0̂τ )∗, finished 7→ f̂alse|}))

}
Let G′ = G ∪ {pc}, for all i > 1 let K ′i = Ki and for all j > 1, (lk′l,j)j = (lkl,j)j . Let also K ′1 be a fresh empty
local heap and (lk′1,j)j = ({(` 7→ 0) | `}) :: ε. Using Assumption ??, it is simple to show that (G′, (K ′i, (lk

′i,j)j)i)
is a configuration decomposition of 〈`, s′, π, γ, αpc.constructor〉 :: Ω · Ξ ·H ′ · S and that:

β`Call(αpc.constructor,K
′
1, (lk

′1,j)j) <: {LStatec′,m,0((NFS(c), (>τj )j≤n); (0̂k)k≤loc ,NFS(c), (>τj )j≤n; (⊥)∗; 0∗)} <: ∆′

(52)
Observe that βGPthr(γ) = βG

′

Pthr(γ). Besides ∆ :> βCnf(Ω ·Ξ ·H ·S) implies that β`Pact(π)∪βGPthr(γ) <: ∆, and we know
that since ∆ ⊆ ∆′ we have ∆ <: ∆′. Therefore by transitivity of <: we have :

β`Pact(π) ∪ βG
′

Pthr(γ) <: ∆′ (53)

Moreover:

βG
′

Heap(H ′) = βGHeap(H) ∪ H(βLab(pc), βBlk(o))

= βGHeap(H) ∪ H(c, βBlk({|c; (fτ 7→ 0τ )∗, finished 7→ false|}))

<: ∆ ∪ H(c, {|c; (f 7→ 0̂τ )∗, finished 7→ f̂alse|}))
<: ∆′ (54)

It is easy to check that X ′ ∈ βCnf(Ψ
′), where X ′ is the following set of facts:

X ′ = βG
′

Stk (〈`, s′, π, γ, αpc.constructor〉 :: Ω,Ξ, (K ′l , (lk
′l,j)j)l) ∪ βG

′

Heap(H ′) ∪ βStat(S)

5We assume here that boolean fields are initialized to false. The proof can be adapted to the case where they are initialized to true by using the
implication in rule Fin.
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Using Proposition ?? one can check that:

X ′\X = β`Call(α`.s′ ,K
′
1, (lk

′1,j)j) ∪ β`Pact(π) ∪ βG
′

Pthr(γ) ∪ βG
′

Heap(H ′)

Equation ??, Equation ?? and Equation ?? give us that X ′\X <: ∆′. We conclude by observing that since X <:
∆ <: ∆′ and X ′ ⊆ X ∪ (X ′\X) we have X ′ <: ∆′.

• Rule applied is (A-RESULT):

(A-RESULT)
ϕ′ = 〈`′, onPause, ε, γ′, α′〉 H(`′).finished = true ϕ = 〈`, s, ε, γ, α〉 s ∈ {onPause, onStop}
H(`′).parent = ` ∅ ` serHVal(H(`′).result) = (w′, H ′) H ′′ = (H,H ′)[` 7→ H(`)[result 7→ w′]]

ϕ′ :: ϕ :: Ω · Ξ ·H · S ⇒ 〈`, s, ε, γ, α`.onActivityResult〉 :: ϕ′ :: Ω · Ξ ·H ′′ · S

Since we focus only on well-formed configurations, we have ` = pc and `′ = p′c′ for some pointers p, p′ and some
activity classes c, c′. Also, let H(`) = {|c; (f 7→ v̂)∗|} and H(`′) = {|c′; (f ′ 7→ v̂′)∗,parent 7→ `, result 7→ w|}.
We then observe that αpc.onActivityResult = 〈c′′,m, 0 · v∗ · st∗ · R〉 :: ε, where (c′′, st∗) = lookup(c, onActivityResult),
sign(c′′, onActivityResult) = τ1, . . . , τn

loc−−→ τ and:

R = ((ri 7→ 0)i≤loc , rloc+1 7→ pc, (rloc+1+j 7→ v′j)
j≤n),

for some values v′1, . . . , v
′
n of the correct type τ1, . . . , τn. By Assumption ??, we also have c ≤ c′′.

Given that ∆ :> X ∈ βCnf(Ψ), we have ∆ :> βGHeap(H). We know that ` = pc ∈ dom(H), and since local heaps
contain only locations whose annotations are program points, we know that ` ∈ dom(G). Therefore there exists
H(λ, b̂) ∈ ∆ such that λ = βLab(`) = c and βBlk({|c; (f 7→ v)∗|})vnfs

Blk b̂. This implies that b̂ = {|c; (f 7→ v̂)∗|} for some
v̂∗ such that ∀i, βVal(vi)vnfs v̂i. Hence using the implications Cbk included in (|P |) we get that:

(|P |) ∪∆ ` LStatec′′,m,0((NFS(c), (>τj )j≤n); (0̂k)k≤loc ,NFS(c), (>τj )j≤n; (⊥)∗; 0∗) (55)

Similarly, there exists H(λ′, b̂′) ∈ ∆ such that λ′ = βLab(`′) = c′ and βBlk(H(`′)) vnfs
Blk b̂

′, which implies that
b̂′ = {|c′; (f ′ 7→ v̂′)∗,parent 7→ c, result 7→ ŵ|} for some v̂′∗, λ′′ such that ∀i.βVal(v

′
i) vnfs v̂′i and βVal(w) vnfs ŵ.

Hence by using the implication Res we get

(|P |) ∪∆ ` H(c, {|c; (f 7→ v̂)∗[result 7→ ŵ]|}) (56)

We define the following set of facts:

∆′ = ∆∪{LStatec′′,m,0((NFS(c), (>τj )j≤n); (0̂k)k≤loc ,NFS(c), (>τj )j≤n; (⊥)∗; 0∗)}∪{H(c, {|c; (f 7→ v̂)∗[result 7→ ŵ]|})}

Equation ?? and Equation ?? prove that (|P |) ∪∆ ` ∆′.
Let K ′1 be an fresh empty local heap. We take G′ = G[` 7→ H(`)[result 7→ w′]]] ∪H ′, (K ′l)l = K ′1 :: K1 :: (K)l>3

and (lk′l,j)l,j = (({(` 7→ 0) | `}) :: ε) :: (lk1,j)j :: (lkl,j)l>3,j .
Recall that ` ∈ G, therefore w = H(`).result is either a primitive value or in dom(G). Besides ∆ :> βGHeap(H) and
serHVal(w) = (w′, H ′), therefore by applying Lemma ?? we know that ∆ :> βG∪H

′

Heap (H ′) and that G ∪H ′, (Ki)i is a
heap decomposition of H ∪H ′ · S.
By Lemma ?? we know that for all i, w′ 6∈ dom(Ki), therefore G′, (Ki)i is a heap decomposition of H ′′ · S. Since
K ′0 is a fresh empty local heap we get from this that G′, (K ′i)i is a heap decomposition of H ′′ · S.
Using Assumption ??, it is simple to check that (G′, (K ′i, (lk

′i,j)j)i) is a configuration decomposition of Ψ′.
Let X ′ be the corresponding set of facts in βCnf(Ψ

′):

X ′ = βG
′

Stk (〈`, s, ε, γ, α`.onActivityResult〉 :: ϕ′ :: Ω,Ξ, (K ′l , (lk
′l,j)j)l) ∪ βG

′

Heap(H ′′) ∪ βStat(S)

We are going to prove that X ′ is over-approximated by the set of abstract facts ∆′. Similarly to what we did in the
previous cases, one can check that:

X ′\X = βG
′

Frm(〈`, s, ε, γ, α`.onActivityResult〉,K ′1, (lk
′1,j)j) ∪ βG

′

Heap(H ′′)

And besides:
βG
′

Heap(H ′′) = βGHeap(H|dom(H)\`) ∪ βG∪H
′

Heap (H ′) ∪ H(c, βBlk(H(`)[result 7→ w′]]))
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H(c, βBlk(H(`)[result 7→ w′]])) = H(c, βBlk(H(`))[result 7→ βVal(w
′)]]))

= H(c, βBlk(H(`))[result 7→ βVal(w)]])) (by lemma ??)

<: H(c, b̂[result 7→ ŵ]])) (by Proposition ??)
<: ∆′ (57)

We already saw that βG∪H
′

Heap (H ′) <: ∆ <: ∆′. Moreover βGHeap(H|dom(H)\`) ⊆ βGHeap(H) <: ∆ <: ∆′. These two fact
and Equation ?? show that βG

′

Heap(H ′′) <: ∆′. We can also check that:

βG
′

Frm(〈`, s, ε, γ, α`.onActivityResult〉,K ′1, (lk
′1,j)j)

<: LStatec′′,m,0((NFS(c), (>τj )j≤n); (0̂k)k≤loc ,NFS(c), (>τj )j≤n; (⊥)∗; 0∗) <: ∆′

Hence X ′\X <: ∆′. We conclude by observing that since X <: ∆ <: ∆′ and X ′ ⊆ X ∪ (X ′\X) we have X ′ <: ∆′.
• Rule applied is (A-THREADSTART):

(A-THREADSTART)
ϕ = 〈`, s, π, `′′ :: γ, α〉 ϕ′ = 〈`, s, π, γ, α〉 ψ = ⟪`, `′′, ε, ε, α′⟫ H(`′′) = {|c′; (f 7→ v)∗|}

lookup(c′, run) = (c′′, st∗) sign(c′′, run) = τ
loc−−→ τ ′ α′ = 〈c′′, run, 0 · `′′ · st∗ · (rk 7→ 0)k≤loc, rloc+1 7→ `′′〉

Ω :: ϕ :: Ω′ · Ξ ·H · S ⇒ Ω :: ϕ′ :: Ω′ · ψ :: Ξ ·H · S

Given that X <: ∆, we have ∆ :> βGPthr(`
′′ :: γ). Moreover H(`′′) = {|c′; (f 7→ v)∗|}, therefore there exists

T(λ, b̂) ∈ ∆ such that λ = βLab(`′′) and βBlk({|c′; (f 7→ v)∗|})vnfs
Blk b̂. This implies that b̂ = {|c′; v̂∗|} for some v̂∗ such

that ∀i, βVal(vi)vnfs v̂i.
By well-formedness we get that c′ ≤ Thread, and by Assumption ?? we know that lookup(c′, run) = (c′′, st∗) implies
that c′ ≤ c′′. Moreover since lookup(c′, run) = (c′′, st∗) we know that c′′ ∈ l̂ookup(run), hence we can use the rule
Tstart included in (|P |):

T(λ, {|c′; (f 7→ _)∗|}) ∧ c′ ≤ c′′ ∧ c′ ≤ Thread =⇒ LStatec′′,run,0((NFS(λ),NFS(λ)); (0̂k)k≤loc ,NFS(λ); (⊥)∗; 0∗)
(58)

We define the set of abstract fact:

∆′ = ∆ ∪ {LStatec′′,run,0((NFS(λ),NFS(λ)); (0̂k)k≤loc ,NFS(λ); (⊥)∗; 0∗)}

From Equation ?? we get that (|P |) ∪∆ ` ∆′.
Let n be the length of Ω :: ϕ :: Ω′, and m the length of Ξ. Let K ′t be an fresh empty local heap. We take G′ = G
and :

(K ′l , (lk
′l,j)j)l≤n+m+1 = (Kl, (lk

l,j)j)l≤n :: (K ′t, (({(` 7→ 0) | `}) :: ε)) :: (Kl, (lk
l,j)j)n+1≤l≤n+m

Since (G, (Ki, (lk
i,j)j)i) is a configuration decomposition of Ψ we know that `′′ ∈ dom(G). With this one can check

that (G′, (K ′i, (lk
′i,j)j)i) is a configuration decomposition of Ψ′.

Let X ′ ∈ βCnf(Ψ
′) be the corresponding set of facts:

βG
′

Stk (Ω :: ϕ′ :: Ω′, ψ :: Ξ, (K ′l , (lk
′l,j)j)l) ∪ βG

′

Heap(H) ∪ βStat(S)

Let n0 be such that Ω is of length n0 − 1. It is quite easy to check that:

X ′\X ⊆ βG
′

Frm(〈`, s, π, γ, α〉,K ′n0
, (lk′n0,j)j) ∪ βG

′

Frm(⟪`, `′′, ε, ε, α′⟫,K ′n+1, (lk
′n+1,j)j)

Since `′′ ∈ dom(G), we have that:

∆′ :> {LStatec′′,run,0((NFS(λ),NFS(λ)); (0̂k)k≤loc ,NFS(λ); (⊥)∗; 0∗)}
:> βG

′

Frm(⟪`, `′′, ε, ε, α′⟫,K ′n+1, (lk
′n+1,j)j)

Moreover since φ′ only differ from φ in the fact that it has a smaller thread stack, we have:

βG
′

Frm(〈`, s, π, γ, α〉,K ′n0
, (lk′n0,j)j) ⊆ βGFrm(〈`, s, π, `′′ :: γ, α〉,Kn0 , (lk

n0,j)j) <: ∆

This proves that X ′ :> ∆′.
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• Rule applied is (T-REDUCE):
(T-REDUCE)

`′ · α · π · γ ·H · S  `′ · α′ · π′ · γ′ ·H ′ · S′

Ω · Ξ :: ⟪`, `′, π, γ, α⟫ :: Ξ′ ·H · S ⇒ Ω · Ξ :: ⟪`, `′, π′, γ′, α′⟫ :: Ξ′ ·H ′ · S′

Exactly like the (A-REDUCE) case.
• Rule applied is (T-KILL):

(T-KILL)
H(`′) = {|c; (f 7→ v)∗, finished 7→ _|} H ′ = H[`′ 7→ {|c; (f 7→ v)∗, finished 7→ true|}]

Ω · Ξ :: ⟪`, `′, ε, ε, α⟫ :: Ξ′ ·H · S ⇒ Ω · Ξ :: Ξ′ ·H ′ · S

Exactly like the (A-DESTROY) case.
• Rule applied is (T-INTENT):

(T-INTENT)
(ϕ,ϕ′) ∈ {(〈`, s, π, γ, α〉, 〈`, s, i :: π, γ, α〉), (〈`, s, π, γ, α〉, 〈`, s, i :: π, γ, α〉)}

Ω :: ϕ :: Ω′ · Ξ :: ⟪`, `′, i :: π′, γ′, α′⟫ :: Ξ′ ·H · S ⇒ Ω :: ϕ′ :: Ω′ · Ξ :: ⟪`, `′, π′, γ′, α′⟫ :: Ξ′ ·H · S

Trivial since there are no changes to the abstraction: βCnf(Ψ) = βCnf(Ψ
′).

• Rule applied is (T-THREAD):
(T-THREAD)

(ϕ,ϕ′) ∈ {(〈`, s, π, γ, α〉, 〈`, s, π, `t :: γ, α〉), (〈`, s, π, γ, α〉, 〈`, s, π, `t :: γ, α〉)}
Ω :: ϕ :: Ω′ · Ξ :: ⟪`, `′, π′, `t :: γ′, α′⟫ :: Ξ′ ·H · S ⇒ Ω :: ϕ′ :: Ω′ · Ξ :: ⟪`, `′, π′, γ′, α′⟫ :: Ξ ·H · S

Trivial since there are no changes to the abstraction: βCnf(Ψ) = βCnf(Ψ
′).


