
SilentWhispers: Enforcing Security and Privacy in
Decentralized Credit Networks

Not Every Permissionless Payment Network Requires a Blockchain

Giulio Malavolta⇤
Saarland Informatics Campus

Pedro Moreno-Sanchez⇤
Purdue University

Aniket Kate
Purdue University

Matteo Maffei
TU Vienna

Abstract—Credit networks model transitive trust (or credit)
between users in a distributed environment and have recently
seen a rapid increase of popularity due to their flexible design
and robustness against intrusion. They serve today as a backbone
of real-world IOweYou transaction settlement networks such
as Ripple and Stellar, which are deployed by various banks
worldwide, as well as several other systems, such as spam-
resistant communication protocols and Sybil-tolerant social net-
works. Current solutions, however, raise serious privacy concerns,
as the network topology as well as the credit value of the links are
made public for apparent transparency purposes and any changes
are logged. In payment scenarios, for instance, this means that
all transactions have to be public and everybody knows who paid
what to whom.

In this work, we question the necessity of a privacy-invasive
transaction ledger. In particular, we present SilentWhispers, the
first distributed, privacy-preserving credit network that does
not require any ledger to protect the integrity of transactions.
Yet, SilentWhispers guarantees integrity and privacy of link
values and transactions even in the presence of distrustful users
and malicious neighbors, whose misbehavior in changing link
values is detected and such users can be held accountable. We
formalize these properties as ideal functionalities in the univer-
sal composability framework and present a secure realization
based on a novel combination of secret-sharing-based multi-
party computation and digital signature chains. SilentWhispers
can handle network churn, and it is efficient as demonstrated
with a prototype implementation evaluated using payments data
extracted from the currently deployed Ripple payment system.

I. INTRODUCTION

Motivation. Credit networks [22], [27], [29] model trust
among users in a network through a directed, weighted graph,
where the value of each edge shows the amount of credit that a
user is willing to extend to another. Credit networks constitute
the core of a variety of applications, such as trustworthy online
marketplaces [51], spam filtering [44], rating systems [33],
cloud computing [46], and social networks [45]. Moreover,

⇤Both authors contributed equally and are considered to be co-first authors.

a few emerging payment systems, such as Ripple [6] and
Stellar [4], rely on credit networks to represent and process the
credit between peers: this enables multi-currency transactions
(in fiat currencies, cryptocurrencies and user-defined curren-
cies) across the globe in a matter of seconds, which are also
significantly cheaper than traditional banking solutions [38].
Several major banks worldwide [31], [52], [53], [57] have now
started to use Ripple as a backbone for online transactions.

Credit networks and cryptocurrencies. Ripple and Stellar
are the first payment settlement networks deployed in practice
using the concept of credit network, and it is interesting
to compare them with the other payment systems such as
Bitcoin. Despite its unquestionable utility, Bitcoin (as any other
currency) is limited to transactions where both transacting
parties agree on a common currency. Credit networks, instead,
smoothly enable cross-currency transactions in any user speci-
fied currency (including Bitcoin) and this is one of the reasons
of their increasing deployment in banking systems [38].

Similarly to Bitcoin, Ripple and Stellar networks opted
for a ledger-based consensus to demonstrate consistency of
transactions through transparency. A crucial, and arguably
surprising, insight of this work is that while replicated ledgers
(or blockchains) are crucial in cryptocurrencies, credit net-
works have inherent tolerance against transactional inconsis-
tencies and thus they do not require such replicated ledgers
nor a global consensus process, paving thereby the way for
lightweight transactions.

Privacy in credit networks. Most current credit network
designs [44], [51] are centralized, i.e., the credit network
is maintained entirely in a server environment. The others,
such as Ripple [6] and Stellar [4], make their entire sets
of transactions as well as the network topology publicly
available to establish credibility through transparency. As a
result, credit networks today cannot provide any meaningful
privacy guarantee: simple anonymization methods based on
pseudonyms, like those employed in Ripple, are not effective,
as transactions still remain linkable to each other and they are
susceptible to deanonymization attacks such as [43].

In the context of payment settlement networks, for instance,
everybody knows who paid what to whom [48]. This state
of affairs clearly conflicts with the desire of users, who
instead strive for hiding their credit links and their operations:
businesses and customers are interested in hiding their credit
information and transactions from competitors and even ser-
vice providers [37], while regular users aim at protecting their

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23448

transactions as they might reveal personal information (e.g.,
medical bills or salary).

To tackle this problem, Moreno-Sanchez et al. [47] recently
developed a centralized privacy-preserving architecture for
credit networks, based on trusted hardware and oblivious
computations. Although this solution provides formal privacy
guarantees and is efficient enough to support Ripple transac-
tions, the usage of trusted hardware makes its employment in
real life quite problematic. The first challenge is who should
maintain the trusted hardware and why should the other parties,
distributed over the globe and ranging from individuals to
banks, trust such an entity for the setup and maintenance of the
hardware [50]. The trusted hardware also becomes a critical
bottleneck in terms of scalability and reliability, for instance,
in case of failure or simple software upgrades. On the other
hand, it is hard to imagine a centralized cryptographic solution
that does not rely on trusted hardware, since it is unclear how
one could possibly read the network information required to
perform transactions without breaking the privacy of the other
users.

Our work moves from the observation that the user’s credit
links alone determine her available credit in the network and
the amount of credit loss she can incur due to misbehaving
users. Hence, unlike Bitcoin and other cryptocurrencies, credit
networks are an ideal target for a distributed architecture where
each user maintains her own credit links locally and checks
that her inflow and outflow of credit do not change without
explicit consent. We hereby explore this approach, designing a
distributed architecture that provides strong privacy guarantees,
offers better scalability and reliability, enforces the correctness
of transactions, and holds updates of credit links accountable.

Challenges. Designing a privacy preserving, distributed credit
network is technically challenging. A first problem is to
correctly compute the available credit (max-flow) between two
users without leaking the individual link values. A distributed
max-flow computation [7] is a natural fit, but generic, off-
the-shelf secure multiparty computations among all involved
users would be too slow and not scalable enough for real-
world networks. A second problem is that some of the users
might be dishonest and try to deviate from the protocol in
order to selectively deny some legitimate transactions or learn
sensitive information. Perhaps most interestingly, ensuring the
correctness of the transactions without relying on a privacy
invasive ledger requires a fresh architectural design.

Our contribution. In this work, we present SilentWhispers,
the first privacy-preserving, distributed credit network. In par-
ticular,

• SilentWhispers adapts the traditional landmark routing-
based credit network design [60], [62] to a distributed setting,
extending it with cryptographic constructions that enable trans-
actions among any two users while preserving strong privacy
guarantees.

Technically, SilentWhispers features a novel distributed pay-
ment protocol to calculate the available credit between a sender
and a receiver without revealing information about the credit
in the involved links, nor the transacting users.

Additionally, SilentWhispers allows for holding users account-
able for the correctness of credit updates. Interestingly enough,

Whispers is the first payment system that dispenses with
the deployment of any centrally maintained or replicated,
consensus-based ledger to ensure the integrity of the trans-
actions.

• We formalize for the first time the desired privacy
properties of a credit network (i.e., value privacy, link privacy,
sender privacy, and receiver privacy) as well as security
properties (i.e., integrity and accountability) following the
universal composability (UC) framework [13] and prove that
SilentWhispers constitutes a secure realization.

• We present two extensions of SilentWhispers to enhance
its robustness, by supporting offline nodes, and security, by
considering fully malicious landmarks. We discuss in detail
the tradeoffs in terms of availability, performance, and privacy
induced by these extensions.

• We have implemented SilentWhispers as a C++ library
and evaluated its performance to demonstrate the practicality
of our approach. Specifically, we have extracted transactions
from Ripple activity in the period October 2013–January
2015 to set up the parameters of SilentWhispers and thereby
simulate a realistic scenario. Our experiments show that in
SilentWhispers it is possible to perform a transaction in about
1.3 seconds. The precision of SilentWhispers is optimal (1.0),
which implies the absence of false positives and that users do
not incur any money loss. The performance evaluation shows
that SilentWhispers can be effectively deployed as a real world
transaction network, since it is efficient and scales to a growing
number of users and payment transactions.

Organization. The rest of the paper is organized as follows:
Section II gives a background on credit networks; Section III
presents the key ideas underlying our approach; Section IV
formally defines the privacy guarantees of a credit network;
Section V presents the cryptographic construction; Section VI
illustrates SilentWhispers extensions to handle offline nodes
and malicious landmarks; Section VII discusses our imple-
mentation and performance analysis; Section VIII discusses
the related work; and Section IX concludes this work.

II. BACKGROUND

A. Credit Networks—CN

A credit network (CN) [22], [27], [29] is a weighted,
directed graph G = (V,E), where vertices V represent the
users and weighted edges (links) E represent the credit links.
The weight on an edge (u

1

, u
2

) 2 E indicates the unconsumed
credit that a user u

2

has extended to u
1

. For convenience, we
denote by val

(u1,u2)
the non-negative credit of the directed

link between u
1

and u
2

. A credit network is equipped with
four operations (pay, chgLink, test, testLink): pay allows to
decrease the credit between two users only along credit paths
connecting those users; test checks the available credit along
credit paths connecting two users; testLink and chgLink enable
to test and increase the credit in a direct credit link between
two users. We refer to [47] for their formal definitions.

The loss of credit incurred by the users in a credit network
is bounded [22] by the credit they have extended to a misbe-
having user. Moreover, credit loss is localized [21], as only
honest users who have extended credit to a misbehaving one

2

can incur credit loss. These interesting and useful properties
have motivated the use of credit networks in several Sybil and
malicious behavior tolerant applications [4], [6], [33], [44]–
[46], [51].

Centralized vs. distributed CN designs. In a central-
ized credit network design, a service provider maintains the
complete credit network and updates it according to users
transactions. This approach is used, for instance, to avoid
fraud in marketplaces [51] and to mitigate spam in e-mail
systems [44] or social networks [45]. In a distributed design,
every user maintains her own credit links. This approach is
adopted for example in a Local Exchange Trading System
(LETS) [1], where credit is used to monetize different goods
such as childcare or transport.

We aim at a distributed privacy-preserving credit network
design, as it better fits the nature of current banking, where
each user is responsible for her own credit while each bank
is responsible for credit with its customers. There are several
challenges that should be addressed in a distributed design:
how the routing information is spread along the credit network,
how to reconstruct credit paths to perform transactions (e.g.,
payments), how to ensure the correctness of these transactions
without a privacy-invasive ledger, and what privacy properties
are desirable.

B. Routing in Distributed CN

A routing protocol computes the discovery of the credit
paths among different users in the network. Using max-
flow [24], [26], [30] to perform routing in a centralized
credit network does not scale to large networks, which is
only accentuated in the case of distributed credit networks.
Thus, recent works adopt an approximated routing algorithm,
called landmark routing [60], where only a subset of all
possible paths between sender and receiver are calculated. It
has been shown in the context of centralized credit networks
that landmark routing outperforms the max-flow approach [62].

The idea of the landmark routing protocol is to calculate a
path between sender and receiver through an intermediary node
called a landmark. In more detail, landmarks are selected nodes
which are well known to every other node in the network.
Each landmark starts two instances of the Breadth-First-Search
(BFS) algorithm rooted at itself. In the first instance only
edges in the forward direction are considered, calculating thus
shortest paths from the landmark to each node. The second
instance only considers edges in the reverse direction, thereby
obtaining the shortest paths from each node to the landmark.
This results in every user learning her parent in the path
to and from each landmark. In the following, we denote by
arborescence the BFS trees containing shortest paths from each
landmark to all the nodes. Correspondingly, we denote by anti-
arborescence the BFS trees containing shortest paths from all
nodes to each of the landmarks.

With such information, when a path between two users
(e.g., sender and receiver) needs to be calculated, the shortest
path from sender to landmark and the shortest path from
landmark to receiver are stitched together to generate a uni-
directional path of the form sender ! . . . ! landmark
! . . . ! receiver. Such a path can be calculated for each

of the landmarks. We refer the reader to [47] for a detailed
description of landmark routing on directed graphs.

Applying landmark routing in a distributed network re-
quires to perform the BFS algorithm in a distributed man-
ner [7], [39]. Throughout the rest of the paper, we assume that
the execution of the landmark-based BFS algorithm, which we
address by rout, results in every user knowing its parent on the
path to the BFS root node. We formalize the rout functionality
in Section IV.

C. Transactions in Distributed CN

Here we discuss how credit network operations are ex-
ecuted in a distributed fashion. First, chgLink and testLink

operations are locally performed by the two users sharing the
corresponding link.

The pay operation is divided into three main steps. First,
the sender reconstructs the transaction paths with the receiver
through the different landmarks. These transaction paths can
be reconstructed from the arborescence and anti-arborescence
generated after performing the routing protocol. Second, the
credit available in every path is calculated as the minimum
credit among the credits available in each of the links in the
path. The exact approach to calculate the available credit in a
distributed setting and in a privacy-preserving manner is one
of the open challenges that we address in this work. Finally,
the sender decreases the credit available in the paths by a total
amount corresponding to the requested transaction value.

The test operation works as the pay algorithm except that
the last step (where the sender decreases the credit available
in the paths by the transaction value) is omitted.

III. PROBLEM DEFINITION & KEY IDEAS

In the following, we describe the security properties of
interest in a credit network. We defer formal treatment to the
subsequent sections.

Integrity. A credit network achieves integrity if for all pay

operations the following holds. Let path

1

, . . . , path|LM| be the
paths in a pay operation, v

1

, . . . , v|LM| be the credit available
in such paths and x be the transaction value. Then, after
performing a successful pay, every credit link in each pathi is
decreased by xi vi, where x

1

+ . . . + x|LM | = x. If pay is
unsuccessful, no credit link must get modified.

Serializability. Transactions in a credit network are serializ-
able if, for all sets of pay and chgLink operations successfully
performed in a concurrent manner, there exists a serial ordering
of the same operations with the same outcome (i.e., changes
in the credit available in the corresponding paths).

Accountability. A credit network achieves accountability if
it is not possible for the adversary to claim a credit value in a
link other than the current value (i.e., last credit value agreed
between both users sharing the link), without being detected
by honest parties.

We now informally describe the privacy properties of
interest in a credit network. Value privacy and sender privacy
were already formalized in [47], while the others are presented
in this work for the first time.

3

Value privacy. A credit network achieves value privacy if
it is not possible for any adversary to determine the total
value of a transaction between non-compromised users: The
adversary may see some transactions happening over certain
links, but it is not possible for any adversary to determine the
total transaction value.

Link privacy. A credit network achieves link privacy if it is
not possible for any adversary to determine the credit available
in a link between non-compromised users.

Sender privacy. A credit network achieves sender privacy if
it is not possible for any adversary to determine the sender in
a transaction between non-compromised users. The definition
of receiver privacy follows along the same lines.

A. Attacker model

We consider a fully distributed network where the adver-
sary can potentially corrupt, spawn, or impersonate an arbitrary
set of users. The adversary is allowed to adaptively choose the
set of corrupted parties. This models the fact that the adversary
can include her own users in the credit network and that the
adversary might also compromise some of the honest users’
machines.

We initially consider only passive, but still adaptive, cor-
ruption of a minority (less than half of the total set) of the
landmark users, which are thus assumed to be honest-but-
curious. We assume that the non-corrupted landmarks execute
the algorithms according to our specifications and do not
share private information among each other (i.e., they do not
collude). In our vision, landmarks represent the root of trust
in our network and they can be seen as the network operators
(e.g., banks are the natural candidate to serve as landmarks
in a transaction system). Furthermore, operations from the
landmarks in the protocol are confined to the computation
of the minimum value of each path during the transaction
protocol. The landmarks could report a value smaller or greater
than the actual minimum value of a path. A smaller value
would reduce the functionality of the system while no credit
would be lost by the honest user. A greater value would be
detected by the honest user who does not have enough credit in
the transaction path. Therefore, in both cases landmarks would
lose customers and (possibly) go out of business. We thus
argue that it is in the interest of the landmarks to follow the
protocol in order to maintain the availability of their network.

Nevertheless, it is theoretically interesting to realize a
system that is resilient against the active corruption of a subset
of landmarks. Later, in Section VI, we extend SilentWhispers
in order to provide security and privacy guarantees even in
presence of actively malicious landmarks.

B. Strawman Approach and Key Ideas

Routing: finding paths in epochs. Routing information must
be repeatedly recalculated to account for the dynamic nature
of credit networks: credit links among users are continuously
updated, created, and deleted as a result of carrying out
the transactions. Under the assumption that users are loosely
synchronized, we divide the time in well-known epochs: BFS
arborescences and anti-arborescences are created at the begin-
ning of each epoch and users utilize that routing information
throughout the duration of the epoch.

15 70 25 5

[15
]

[15]

[15]

[7
0]

[7
0]

[25]

[25]

[5]

[5]

[min(15, 70, ...)
]

[min(15, 70, ...)]

[25]

[5]

U1 U2 U3 U4

Fig. 1: An illustrative example of the use of SMPC in SilentWhispers:
Dashed lines show communication between parties and solid arrows
represent credit links, while notation [a] indicates a (secret sharing)
share of value a. We consider a payment from user U1 to U4. First,
every user in the path sends a share of her link value to each landmark.
Then, landmarks locally compute the share of the minimum credit
on the path and send it to the sender. Transfer of the share from the
landmark in the middle to the sender has been omitted for readability.

We assume that the set of landmarks is fixed and known
to all users and that the credit network is a connected graph.
Then, the correctness of BFS ascertains that each user receives
routing information from all her neighbors for each landmark.
This ensures that no honest user is alienated by a malicious
neighbor; the absence of BFS related communication from a
neighbor for any landmark serves as a detection mechanism
of misbehavior so that further actions (e.g., removing the link
with the misbehaving neighbor) can be adopted. We leave
the design and implementation of a fault-tolerant BFS as an
interesting future work.

Credit on a path: SMPC. The central technical challenge
in the design of a credit network is the computation of the
credit available in a certain path, which is necessary for
performing a transaction. A first, trivial solution would be to
let every user in the path privately communicate her own link’s
value to the corresponding landmark so that the landmark
can thereby compute the minimum value over the path and
notify the intended recipients. It is easy to see, however, that
this approach fails to guarantee privacy against an honest-
but-curious landmark as the landmark would learn the credit
associated with each link.

A local approach, where the credit on the path gets com-
puted step-by-step by each user in the path, does not solve the
privacy problem either. For instance, suppose that each user
sends to the next user in the path the lower value between the
one of its own link and the one received from the previous user:
it is easy to see that such a protocol leaks all the intermediate
values.

The idea underlying our approach is to design a secure
Multi-Party Computation (SMPC) protocol to compute the
credit available on a path. In order to boost the efficiency of
our construction, we let landmarks play the role of computation
parties, each receiving a share of the credit on each link from
the sender to the receiver. Landmarks can jointly compute the
credit on the whole path, intuitively by computing a series of
minimum functions, but without learning anything about the
result of the computation, nor of course the credit on the links.

4

An illustrative example is shown in Fig. 1. First, every user
in the payment path from the sender (U

1

) to the receiver (U
4

),
creates a share of the link’s value for each of the landmarks.
After receiving all shares, landmarks locally compute the
“minimum” function over the shares, thereby obtaining a share
of the result that is then sent to the sender. Finally, the sender
reconstructs the result and carries out the payment.

This approach, however, leaves two important concerns
unanswered. First, how to assure that the shares come from
users forming a path from the sender to the receiver without
compromising their privacy (e.g., revealing the links); and
second, how to enforce the correctness of the updates of links
caused by the transaction without using a public ledger.

Path construction: chained digital signatures. We ensure
that all shares come from users in a path from the sender to
the receiver by resorting to a chain of signatures. Naı̈vely, we
could assume that every user uses a long-term key pair to sign
the verification key from her predecessor and her successor in
a given path. This would result in a unique signature chain
serving as a valid proof of the existence of a path from sender
to receiver.

However, the exposure of the same long term keys across
different transactions would allow for correlation attacks and
ultimately compromise user privacy. Using fresh keys per
transaction to overcome this issue does not entirely solve the
problem either: since fresh keys are not bound to a user, an
adversary can always impersonate an honest user with her own
keys.

Our idea, instead, is to combine long term and fresh keys.
First, a user signs a fresh verification key with her long term
signing key so that they are bound together. The (sensitive)
long term verification key is revealed only to the counterparty
in a credit link so that the relation between a fresh verification
key and a user is verifiable to the counterparty but remains
hidden for the rest of users in the credit network. Second, a
user can use her fresh signing key to sign the fresh verification
key of the predecessor and successor in any given path,
thereby creating a signature chain. A pictorial description of
the approach is reported in Fig. 2.

Accountability: dispute resolution. In a distributed credit
network, the two end-points of a link are responsible for setting
its value. We provide an accountability mechanism to establish
the real value of a link, in case the two end-points disagree on
that. An illustrative example of this idea is depicted in Fig. 3.

U1 U2 U3 U4LM

Sign(SK

⇤
3 , {VK

⇤
LM, VK

⇤
3 , VK

⇤
4})

Sign(SK

⇤
4 , {VK

⇤
3 , VK

⇤
4})

Sign(SK

⇤
2 , {VK

⇤
1 , VK

⇤
2 , VK

⇤
LM})

Sign(SK

⇤
1 , {VK

⇤
1 , VK

⇤
2}) Sign(SK

⇤
LM, {VK

⇤
2

, VK

⇤
LM, VK

⇤
3})

Fig. 2: Illustrative example of path construction in SilentWhispers.
Every user i has a pair (SK⇤

i ,VK
⇤
i) of signing and verification keys.

Every user in the path privately exchanges the fresh verification key
to both neighbors. Then, each user publishes a signed tuple containing
the fresh verification keys of the neighbors and his/her own. A path
is correct if contiguous verification keys in the path are equal.

(U
1

18�! U
2

)(U
1

16�! U
2

)

Sign(SK2, (U1

15�! U
2

, t
1

))

(ChgLink(U
1

, U
2

, +3), t
2

)

(SK1, VK1)

Sign(SK1, (U1

15�! U
2

, t
1

))

(ChgLink(U
1

, U
2

, +3), t
2

)

(SK2, VK2)

Log Log

Fig. 3: Illustrative example of the dispute resolution in
SilentWhispers. Users sharing a link exchange a signature of the
current link’s value. When an operation on the link occurs (e.g.,
increase the link value by 3 credits) and users do not agree on the
new link’s value, the logs from users allows to solve the dispute (e.g.,
the new value must be set to 18).

In a nutshell, the two end-points establish the current value
of the link by signing it with their long-term signing keys.
Then, if a transaction is routed through such link, both users
log the transaction and sign the new link value. All signatures
in our accountability mechanism contain a timestamp to avoid
rollback attacks. By inspecting these signatures, a judge can
determine the correct value of the link. We assume that long-
term keys are associated to the real user’s identities (e.g., in
an offline contract or using a PKI), such that users are held
accountable for their actions.

IV. SECURITY DEFINITION

We define the security and privacy goals of our design us-
ing the ideal/real world paradigm from the Universal Compos-
ability (UC) framework [13]. We describe in the following the
ideal functionality FCN, which models the intended behavior
of the system, in terms of functionality, security, and privacy.

Ideal world. We consider a connected network of n nodes
where each node is labeled either as a standard end-user (u)
or as a landmark (LM). We model the synchronous network
as an ideal functionality FNET as well as the secure and
authenticated channels that connect each pair of neighboring
nodes, FSMT, as proposed in [13]. In our abstraction, messages
between honest nodes are directly delivered through FSMT, i.e.,
the adversary cannot identify whether there is a communica-
tion between two honest users. The attacker can corrupt any
instance by a message corrupt sent to the respective party ID.
The functionality FNET hands over to the attacker all the static
information related to ID. In case ID is a standard node, all
its subsequent communication is routed through A, which can
reply arbitrarily (active corruption). If ID is a landmark, all its
subsequent communication is recorded and the transcripts are
given to A (passive corruption).

Our ideal functionality for a credit network, FCN, maintains
locally the static information about nodes, links, and their
credit using a matrix. Additionally, FCN logs all of the changes
to the credits between nodes that result from successful trans-
actions and we denote by val

t
u,u0 the credit between some u

and u 0 at time t. FCN is composed by a set of functionali-
ties (FROUT, FPAY, FTEST, FCHGLINK, FTESTLINK, FACC) that
interact as follows: FCN periodically executes a functionality
to update the routing information of the nodes in the network
(FROUT) using FNET as a mean of synchronization. Nodes can
contact the ideal functionality to perform transactions (FPAY),
test the available credit (FTEST), update the credit on a link

5

(FCHGLINK), test the credit available in a link (FTESTLINK) or
to solve disputes relative to the credit on some link (FACC).
Under these assumptions, we describe the routines executed
by FCN in the following.

FROUT: The routing algorithm (Fig. 4) allows the functionality
to construct the BFS trees required to form transaction paths
between a pair of nodes. The landmark fixes the set of children
nodes for the computation of the BFS (step 1) and the ideal
functionality executes the BFS (steps 2-3) by exchanging
messages with each node in the network, starting from the
set specified by the landmark. Each node can decide whether
to interrupt the algorithm or to indicate the next node to visit.
This models possible disruptive users in a distributed credit
network. At the end of the execution each node learns its parent
from and to the input landmark.

FPAY: The algorithm in Fig. 5 provides an ideal functionality of
the pay operation in a distributed credit network. The protocol
is initiated by the sender Sdr that communicates the two ends
of the transaction to the ideal functionality FPAY (step 1).
For each landmark, FPAY derives two paths connecting the
sender to the landmark (resp. the receiver to the landmark) in
a distributed fashion (step 2): the functionality interacts with
each intermediate node that can choose the next node where
to route FPAY, until the landmark is reached (or the maximum
length of the path is exceeded). Again, each node along the
path can arbitrarily delay the operation and potentially choose
any next node to visit, to model possibly malicious nodes.
FPAY computes then the total amount of credit associated with
each of the derived paths and sends the information to the
sender (step 3) who can either interrupt the execution or inform
FPAY of the values to transfer through each path (step 4). FPAY

informs the nodes of the value transacted through them and the
receiver of the total amount of transacted credit (steps 5-6).
Each node involved in this phase can either confirm or abort
the operation if the transacted amount exceeds the capacity
of some link. If all of the nodes accept, FPAY updates the
credit information of each node involved consistently with the
transacted amount. Then FPAY informs the set of nodes that
participated to the protocol (starting from the receiver) of the
operation’s success (step 7). This is done again iteratively such
that any node can interrupt the communication, if traversed.

The FTEST functionality computes the credit available on
the paths connecting any two nodes in the network, and it
works analogously to the steps 1-3 in FPAY. At any point
in the execution each node can query FTESTLINK to obtain
information about her adjacent links and each pair of neigh-
boring nodes can jointly query FCHGLINK to update their link
or generate a new one.

FACC: The accountability algorithm depicted in Fig. 6 solves
eventual disputes among pairs of nodes for the value of the
link between them. Any two nodes can contact the FACC

functionality with their claim for the value of that link (step
1). If the two values are equal or the two nodes are not arguing
about the same link, FACC informs the nodes and interrupts the
execution (step 2). Otherwise FACC retrieves the current value
of the link from FCN and reports to each node the index of the
instance that queried the correct value, if any. The functionality
FACC iterates this procedure with older versions of the link
value (step 3) until the initial state of the system is reached. If

Functionality FROUT

1) LM sends to FROUT two tuples of the form (u1, . . . , um), indi-
cating the sets of neighbors of LM in the arborescence and anti-
arborescence, respectively.

2) FROUT runs a BFS algorithm over the links among registered users
to construct an arborescence and an anti-arborescence rooted at the
landmark IDLM.

3) Specifically, the algorithm operates on a set of users to be visited,
initially set to the one specified by the landmark. For each user
u in this set, FROUT sends her a message (sid, IDLM, h, up) via
FSMT, where h is the number of hops that separates u from IDLM

and up is the parent node on that path. u can either send (?, sid),
causing FROUT to roll back to the previous user, or (u 0

, sid) to
indicate the next user u

0 to visit, which is thus added to the set.
The algorithm terminates when the set is empty.

Fig. 4: Ideal functionality for the rout operation

Functionality FPAY

1) For each LM, a sender Sdr sends the tuple (Sdr,Rvr,Txid, IDLM)
to FPAY, where Rvr, Txid, and IDLM denote the receiver, the trans-
action identifier, and the landmark identifier of the transaction.

2) For each LM, FPAY derives the path from Sdr to Rvr, by
concatenating the respective paths to LM, as follows: starting
from Sdr and Rvr, FPAY sends (Txid, IDLM, u) via FSMT, where
u is the previous user in the chain, if any. Each node can
either send (?,Txid, IDLM), to have FPAY ignoring the path, or
(>,Txid, IDLM) to let the functionality follow the path constructed
by FROUT, or (u 0

,Txid, IDLM) to indicate the next user on the path
to LM. FPAY proceeds until it reaches LM from both ends (or the
maximum length of the path is exceeded) and it computes the
minimum value vLM among credits of the links on the path to
LM.

3) For each LM, FPAY calculates the set of tuples P = {IDLM, vLM},
where vLM is the credit associated to the path from the Sdr to the
Rvr through LM (pathLM). FPAY sends then (P , Txid) to the Sdr

via FSMT.
4) Sdr can either abort by sending (?,Txid) to FPAY or send a set

of tuples (IDLM, xLM,Txid) to FPAY via FSMT.
5) For each LM, FPAY informs all the nodes in pathLM of the

value xLM by sending (xLM, IDLM,Txid) via FSMT. Each node
can either send (?, IDLM,Txid) to abort the transaction, or
(accept, IDLM,Txid) to carry out the transaction. In the latter case
FPAY checks whether for the corresponding edge e : vale � xLM,
and if yes FPAY subtracts xLM from vale. If one of the conditions
is not met or there is at least one (?, IDLM,Txid) message,
then FPAY aborts the transaction and restores the credits on the
corresponding links of pathLM.

6) FPAY sends to Rvr the tuple (Sdr,Rvr, v,Txid) via FSMT, where
v is the total amount transacted to Rvr. Rvr can either abort
the transaction by sending (?,Txid) or allow it by sending
(success,Txid).

7) For each LM, FPAY sends either (success,Txid) (or (?,Txid) de-
pending on the outcome of the transaction) to each user in the path
from the Rvr to the Sdr, starting from the Rvr. Such a user can
either reply with (?,Txid) to conclude the functionality or with
(accept,Txid) to have FPAY passing the message (success,Txid)
(or (?,Txid)) to the next user until Sdr is reached.

Fig. 5: Ideal functionality for the pay operation

still no value provided by any clients matches the one recorded
by FCN, FACC returns ? (step 4).

6

Functionality FACC

1) Two nodes u0 and u1 contact FACC by sending the tuple
(val0, u0, u

0
0), (val1, u 0

1, u1) respectively, via FSMT.
2) The functionality FACC checks whether u

0
0 = u1 and u

0
1 = u0,

if this is not the case then FACC sends the distinguished symbol
? to both of the instances and aborts the execution. If val0 =
val1 the functionality replies with the distinguished symbol >
and interrupts the protocol.

3) Set t to be the current time and iterate until t = 0

a) FACC queries FCN to retrieve val

t
(u0,u1)

.
b) If val

t
(u0,u1)

= val0, then FACC sends the tuple (0, val0, val1)
to u0 and u1 via FSMT. Else, if val

t
(u0,u1)

= val1, then the
functionality sends the tuple (1, val0, val1) to u0 and u1 via
FSMT. Otherwise, FACC sets t = t� 1.

4) FACC returns (?, val0, val1).

Fig. 6: Ideal functionality for the accountability mechanism

Discussion. What is left to be shown is that our ideal
functionality captures the security and privacy properties that
one would expect for a credit network.

- Integrity: In the ideal world, integrity is guaranteed by the
ideal functionality, who maintains a database of the link values
and updates them consistently with the successful transactions.

- Serializability: We observe that any set of chgLink opera-
tions on the same link is executed serially by the ideal function-
ality. Assume for the moment that only chgLink operations are
performed: as any two concurrent operations are necessarily
executed on two different links, it is easy to find a scheduler
that returns the same outcome by performing those operation
in some serial order (i.e., any order). Since a pay operation
can be represented as a set of chgLink operations performed
atomically (due to the integrity notion), the property follows.

- Accountability: We consider attacks aiming to alter the
credit on the network. Hence we can assume without loss of
generality that any malicious behavior necessarily results in
at least one pair of neighboring nodes not agreeing on the
value of one of their shared links. We further note that the
ideal functionality updates the values of the links involved
in a transaction only if all the corresponding nodes accept
it. It follows that, for each link, the functionality always
retrieves a value which the two end-points agreed upon and is
correctly updated upon each successful transaction. Therefore
the accountability algorithm can successfully determine which
of the two nodes is claiming the correct value of the link, if
any.

- Value privacy: We observe that the only information
revealed to the nodes about a transaction is the value of the
transaction that traverses them (while the total amount of
transferred credit is kept local by the ideal functionality). It
is unavoidable to leak this information to each node since it
affects its direct links and thus the leakage for the transaction
value in our protocol is optimal.

- Link privacy: The reasoning is similar, since we model
each link as a value shared between two users and concealed
from the others.

- Sender/Receiver privacy: For sender and receiver privacy,
we note that the ideal functionality addresses each transaction

with a uniformly sampled id that does not contain any informa-
tion about the identity of the sender nor of the receiver. Thus
in the ideal world each user does not learn any information
beyond the fact that some transaction has traversed some of
her direct links, which is inevitable to disclose.

For a detailed discussion of a few interesting design choices
underlying the ideal world, we refer to the full version [3].

UC-Security. We define the concept of UC-security, which
intuitively captures under which conditions a cryptographic
system in the real world constitutes a secure realization of the
ideal world. Let EXEC⌧,A,E be the ensemble of the outputs of
the environment E when interacting with the adversary A and
parties running the protocol ⌧ (over the random coins of all
the involved machines).

Definition 1 (UC-Security): A protocol ⌧ UC-realizes an
ideal functionality F if for any adversary A there exists a
simulator S such that for any environment E the ensembles
EXEC⌧,A,E and EXECF,S,E are computationally indistinguish-
able.

V. CRYPTOGRAPHIC CONSTRUCTION

A. Building Blocks

In the following we provide the intuitive description of the
cryptographic primitives that we deploy in our system.

Secret Sharing. A Secret Sharing Scheme (T) [56] allows a
dealer to distribute shares of a secret among different parties
such that any number of shares below a certain threshold re-
veals no information about the secret itself in the information-
theoretic sense, while an arbitrary subset of shares above the
threshold allows a receiver to fully reconstruct the secret.
In the following, we denote the shares of a secret value by
[[s

1

, . . . , sm]], where m is the number of landmarks. We set
the threshold t < m/2 so that multiplication of shares can be
handled by m computing parties.

Distributed Minimum Computation. On input secret shares
of values x

1

, . . . , xn shared using scheme T among a set of
computing parties, a multi-party computation protocol min()

results in each party having a share of the minimum of
those values. We employ a distributed integer comparison
protocol [16] for this distributed computation.

Digital Signatures. A signature scheme ⇧ allows one to
compute a tag (�) on a given message m that proves the au-
thenticity of it. We denote this operation as � Sign(sk, m),
where sk is a secret key. In particular it should be infeasible for
anybody not possessing the secret key to produce a valid tag
on any arbitrary message. In addition, the validity of the tag-
message pair can be publicly verified via an associated verifica-
tion key (vk). We denote this operation as Verify(vk, m, �). We
refer to [14] for the security definition in the UC framework.

B. Protocol Description

System assumptions. We assume that the set of landmarks
is fixed at the beginning of each epoch and that it is known
to all users. Any changes to the set become effective in the
next routing epoch as users perform a new instance of the link
setup protocol. This is crucial as this allows users to know the

7

root of all BFS trees in advance (and therefore the number of
possible paths) during the routing operation, and to securely
communicate with them. In practice, one can maintain the set
of landmarks in a public and authenticated log (e.g., as Tor
directory authorities listing). We assume that the communica-
tion between two honest users is not observable by the attacker.
This is a stronger requirement than the presence of a secure
channel, since, in addition to hiding the messages exchanged
by the two clients, we want to hide the fact that communication
happened in the first place. If the adversary observes whether
two honest users communicate, it is not possible to enforce
any meaningful notion of sender/receiver privacy. We note
that, in practice, this condition can be enforced by having the
two users deploying some anonymous communication channel
(e.g., Tor [23]). Moreover, we require all the involved users
to be online during a given transaction or the presence of a
synchronizer (among the others [7], [59]) for the execution of
the algorithms. We discuss later in Section VI-A on how to
relax this condition.

Notation. We use bold terms to denote the input fields added
only for readability. The rest of inputs are locally held by
involved users. Moreover, We use the following notation to
describe our protocols.

p(u, i) Parent of node u in the pathi
c(u, i) Child of node u in the pathi

valu1,u2 Credit value on link u1 ! u2

stu1,u2 Last value on u1 ! u2 agreed by u1, u2

m[i] Element at position i in array m

vk

i
u Fresh verification key of user u in pathi

max Maximum path length (system parameter)
ts Current timestamp

Setup. Users have access to a synchronous network through
FNET. Every pair of users sharing a credit link communicate
through a secure and authenticated channel, described by
FSMT. Secure realizations of FNET and FSMT have been pro-
posed in [13]. Finally, users have access to the routing protocol
described in FROUT: this functionality is executed periodically
at epochs (e.g., according to some system parameter) so that
frequent changes in the inherently dynamic topology of credit
networks are taken into account for subsequent transactions.
We show in the full version [3] that the landmark routing
algorithm UC-realizes FROUT.

Link setup. This protocol allows two users sharing a credit
link to agree on the link’s value at the beginning of each
routing epoch. This is later used as a reference for subsequent
updates within the epoch. For that, each user signs the other’s
long-term verification key and the current credit with her own
long-term signing key.

Transaction. For easing the presentation, we have made
two simplifications. First, we assume the set of paths
{path

1

, . . . , pathLM} as input of the transaction protocol, al-
though in reality every user notifies her parent on the path
that she is part of a transaction path and she needs to carry
out the corresponding operations. Second, at certain steps of
the protocol we write that users submit messages directly to
the corresponding landmark (e.g., step 8) to mean that such
messages are sent to the landmark by forwarding it among
neighbors in the path. The creator of such message encrypts
it under the public key of the landmark and signs it with her
fresh signing key to avoid tampering from other users.

Protocol 1: Link setup protocol.

Input:
u1, u2: Nodes creating a shared link

val: Value of the link u1 ! u2

(sk⇤ui , vk
⇤
ui): User i long term keys

epoch: Current epoch
1 u1 sends �1 Sign(sk⇤1, (settled||vk⇤1||vk⇤2||val||epoch)) to
u2

2 u2 sends �2 Sign(sk⇤2, (settled||vk⇤1||vk⇤2||val||epoch)) to
u1

3 if Verify(vk⇤2, (settled||vk⇤1||vk⇤2||val||epoch),�2) then u1

stores (�1,�2, stvk⇤1 ,vk
⇤
2
:= (settled||vk⇤1||vk⇤2||val||epoch))

4 if Verify(vk⇤1, (settled||vk⇤1||vk⇤2||val||epoch),�1) then u2

stores (�1,�2, stvk⇤1 ,vk
⇤
2
:= (settled||vk⇤1||vk⇤2||val||epoch))

Phase 1: path construction and shares submission. In this
phase, users on each path create a signature chain and submit
the shares of their link values to the landmarks. In detail,
starting from the sender, each user signs her fresh verification
key with her long term signing key and sends the signature
to both the successor and the predecessor in the path (lines 3-
4). This signature binds a fresh verification key to a user and
thus avoids illegitimate impersonations. Neighbors can then
exchange the shares of their shared link’s value and check that
they reconstruct to the same value (i.e., the two end-points
agree on the credit between them) (lines 5-6). Finally, each user
on the path signs all this information along with a timestamp
(to avoid replay attacks) and sends it to the landmarks (line
8). The signature is created with the user’s fresh signing key
so that the user’s identity is concealed from the landmarks.
Finally, the sender must create additional messages for each
path in order to pad it into a length predefined by the system
(i.e., max) in order to avoid inference attacks based on the path
length (line 9). The same procedure is symmetrically carried
out on the paths from the receiver to each landmark.

Concerning the integrity of paths, we observe that a mali-
cious user could divert the signature chain using fresh keys of
her choice. However, she cannot get an honest user into the
fake chain continuation, since that user would refuse to sign
the attacker’s fresh key, making the attack ineffective.

Phase 2: computation of credit on a path. In this phase,
landmarks verify the correctness of the signature chain and
calculate the credit available in each path. In particular, after
the landmarks receive messages from up to max users for each
path, they verify that neighboring keys in a path are consistent
and calculate the minimum value of each path using a secure
multi-party computation (lines 11-12). This results into each
landmark having a share of the minimum value for each path
which is then sent to the sender (line 13).

In a nutshell, the use of fresh keys hides users identities
and the multiparty computation over shared values does not
reveal the actual link values to the landmarks. Additionally,
due to the use of fresh keys for each path, landmarks cannot
detect whether a given link is shared in more than one path.
This could result in landmarks calculating a path value greater
than the available one. Nevertheless, this over-approximation
is detected in the next phase when a link cannot be updated
due to insufficient credit and this path is then ignored for
the transaction without incurring any credit loss for the users
involved in the transaction.

8

Phase 3: Updating link values. Link values on each path
are updated so that the expected credit reaches the receiver.
This process is performed in two steps. First, the transaction
value for each path is decreased (i.e., on hold) on each link
from the sender to the receiver (lines 18-22). This ensures
that a user puts on hold credit on her outgoing link only after
assuring the credit in the incoming link has been held, and
thus a honest user in the path cannot incur in credit loss. This
escrow serves as a commitment to accept the new link value
if the receiver eventually accepts the transaction.

Second, after receiving the confirmation from the receiver
(i.e., the receiver signature on the transaction’s value for a
given path), the held value is adopted as the new credit value
(i.e., settled) on each link, starting from the receiver to the
sender (lines 25-29). This reverse order ensures that each user
in the path has an incentive to settle the final value: a user first
settles the outgoing link (i.e., giving out credit), and thus is
in the user interest to settle the incoming link (i.e., receiving
credit) to recover the credit. In this manner, credit values on
transaction paths can be consistently updated. Interestingly, if
any user does not cooperate with her neighbor during this
phase (e.g., a faulty user), the credit involved in the dispute
is bounded (see Section II-A) and the dispute can be resolved
later following the accountability protocol.

Test credit. The test operation works similar to the transaction
protocol. It only differs in the fact that the sender will not carry
out the transaction (steps 15-29), as the test operation only
requires the sender to learn the available credit. testLink and
chgLink can be easily performed by exchanging a message
between the two end-points of the credit link through their
authenticated private channel.

Accountability. Our accountability protocol requires some
entity (e.g., a judge) that can enforce decisions externally
to the system. Given two users u

0

, u
1

disputing the current
value on their shared link, this protocol allows each user
to provide the judge with her view of the link (st

0

, st

1

),
the corresponding confirmations ((�0

0

, �1

0

), (�0

1

, �1

1

)) and the
signatures of the sender and the receiver of the last transaction
((�Sdr

0

, �Rvr
0

), (�Sdr
1

, �Rvr
1

)). Given that, the judge can decide the
valid link state following the steps we describe in Protocol 3.

First, the judge checks the validity of signatures (�0

i , �
1

i)

on the link states presented by each user ui (lines 2-5). If
only one user provides valid signatures, her state is taken as
the valid one. If no user provides valid signatures, the judge
cannot decide which state is correct. We denote this by ?.
Finally, if all signatures are correct, the judge continues to
check the content of both states st

0

and st

1

.

The judge must determine the currently valid settled value
on the link. However, it is possible that a user’s view consists
on an on hold state and a valid transaction proving that held
value has been successfully transmitted from sender to receiver.
Thus, the judge first attempts to upgrade such views to a
settled state (lines 6-10).

Finally, if both views are in settled state, the judge resolves
the dispute by declaring valid the view with the more recent
timestamp (st[5]) (lines 11-15). In a simpler case where only
one view is in settled state, such view is declared as the valid
one. Otherwise, if any user’s view is finally settled, the judge
outputs ?.

Protocol 2: Transaction protocol.

Input:
Sdr,Rvr: Transaction sender and receiver

{path1, . . . , pathLM} Set of paths Sdr to Rvr

(sk⇤ui , vk
⇤
ui): user ui long term keys

/

*

Phase 1: signature chain

*

/

1 for i 2 |LM| do
2 for u 2 pathi do
3 u creates fresh keys (sku , vku), �u := Sign(sk⇤u , vku)

and sends (�u , vku) to p(u, i) and to c(u, i)
4 u receives (�c(u,i), vkc(u,i)) from c(u, i) and

(�p(u,i), vkp(u,i)) from p(u, i)
5 u receives from c(u, i) shares [[s01, . . . , s

0
|LM|]] , u

reconstructs v’ from [[s01, . . . , s
0
|LM|]] and checks

whether v0 = valc(u,i),u

6 u creates [[s1, . . . , s|LM|]] for the value valu,p(u,i) and
sends them to p(u, i)

7 if Verify(vk⇤c(u,i), vkc(u,i),�c(u,i)) ^
Verify(vk⇤p(u,i), vkp(u,i),�p(u,i)) then

8 for j 2 |LM| do
9 u creates m :=

(vkc(u,i)||[[s0j]]||vku ||vkp(u,i)||[[sj]]||Txid||ts),
u creates �LMj Sign(sku ,m) and finally
sends (�LMj ,m) to LMj

10 Sdr creates k := (max� |pathi|) more tuples (m,�LMi) ,
where all shares reconstruct to the maximum possible
credit in a link, and sends them to LMi

/

*

Phase 2: Minimum computation

*

/

11 for i 2 |LM| do
12 Each LM checks whether |pathi| = max ^

8j 2 {1, . . . , |pathi|} : Verify(mj [3],mj ,�j) ^mj [1] =
mj�1[3]^mj [4] = mj+1[3]^mj�1[6] = mj [6] = mj+1[6]

13 Each LM computes the share smini as result for function
min(·) over the shares [[s1, . . . , smax]] belonging to pathi.

14 Each LM sends the resulting tuples (i, smini , vk
i
1, vk

i
max)

to Sdr

/

*

Phase 3: Carrying out transaction

*

/

15 Sdr reconstructs the tuples (i,mini) and verifies that vki1 and
vk

i
max are the first and last keys of pathi as she expects

16 for i 2 |LM| do
17 Sdr chooses the transaction value xi, generates

tx i := (ts||xi||Txid||vkSdr||vkRvr) and
�

i
Sdr := Sign(skSdr, tx i), and sends (tx i,�

i
Sdr) to the

nodes in pathi
18 for u 2 pathi do
19 u checks Verify(vkSdr, tx i,�iSdr), xi is smaller than

the value valu,p(u,i), and previous link c(u, i)! u

has been reduced by xi

20 u decreases link value on pathi by xi resulting in x

0
i

21 u creates m := (on hold||vk⇤u ||vk⇤p(u,i)||x0
i||tx i),

�u := Sign(sk⇤u ,m) and sends (�u ,m) to p(u, i)
22 u receives �p(u,i) := Sign(sk⇤p(u,i),m) from p(u, i)
23 u and p(u, i) locally store (stvk⇤u ,vk

⇤
p(u,i)

:= m) and
(�p(u,i),�u)

24 Rvr �

i
Rvr := Sign(skRvr, tx i) and sends (tx i,�

i
Rvr) to Sdr

25 for i 2 |LM| do
26 Rvr sends (tx i,�

i
Sdr,�

i
Rvr) to every node in pathi

27 for u 2 pathi do
28 u creates m := (settled||vk⇤u ||vk⇤c(u,i)||x0

i||ts),
�u := Sign(sk⇤u ,m) and sends (�u ,m) to c(u, i)

29 u receives �c(u,i) := Sign(sk⇤c(u,i),m) from c(u, i)
30 u and c(u, i) locally store (stvk⇤u ,vk

⇤
c(u,i)

:= m) and
(�c(u,i),�u)

9

Protocol 3: Accountability protocol.

Input:
(vk⇤0), (vk

⇤
1): Keys for u0, u1

(st0,�
0
0 ,�

1
0), (st1,�

1
1 ,�

0
1): Link state for u0, u1

(�Sdr
0 ,�

Rvr
0), (�Sdr

1 ,�

Rvr
1): Signatures of tx for u0, u1

/

*

Check signatures on link states

*

/

1 for i 2 {0, 1} do
2 if ¬Verify(vk⇤i , sti,�

i
i) _ ¬Verify(vk⇤1�i, sti,�

1�i
i) then

3 if
Verify(vk⇤1�i, st1�i,�

1�i
1�i) ^ Verify(vk⇤i , st1�i,�

i
1�i)

then
4 return st1�i

5 else return ?

/

*

Upgrade states on hold

*

/

6 for i 2 {0, 1} do
7 if sti[1] = on hold then
8 tx := (sti[5]||sti[6]||sti[7]||sti[8]||sti[9])
9 if Verify(sti[8], tx ,�

Sdr
i) ^ Verify(sti[9], tx ,�

Rvr
i)

then
10 sti[1] = settled

/

*

Settled link views

*

/

11 for i 2 {0, 1} do
12 if sti[1] = settled ^ st1�i[1] = settled then
13 if sti[5] > st1�i[5] then return sti

14 if sti[1] = settled then return sti

15 return ?

C. System Discussion

Handling faulty users. During the first phase of the transac-
tion protocol, a malicious user could send inconsistent shares
of her link’s value to a landmark. The landmark notices this
in the second phase since inconsistent shares are not signed
by honest users. Then, the landmark directly assigns zero to
that path’s capacity and continues processing other paths for
the current transaction.

During the third phase, a user could refuse to update a
link value during a transaction. On the one hand, if this
happens while credit is being set on hold from sender to
receiver, the receiver does not receive the expected credit
and thus he does not sign the transaction. Consequently, after
a certain timeout, users in the path can safely release the
held value for such transaction. On the other hand, if this
occurs when credit is being settled from receiver to sender, the
accountability mechanism provided in SilentWhispers allows
the honest counterparty of the link to show the transaction
signed by both sender and receiver as a valid proof to settle
the new value in the link.

We note that two neighboring corrupted nodes may apply
arbitrary modifications to their shared links without necessarily
following the procedure specified above. This does not affect
the credit balance for honest users: Our mechanism for link
updates ensures that any honest user puts on hold the credit
on any outgoing link only after the same amount of credit
has been held on an incoming edge. That is, the total balance
of the intermediate users of a given transaction is maintained
throughout the execution of the transaction. Given that, it
follows that no malicious behavior can cause loss of credit
for honest users.

Best-effort concurrent transactions. Transactions over dis-
joints sets of links can be easily carried out concurrently. If,
however, two or more transactions require more credit than
available at a shared link, the user of such link notices that
when required to decrease her link. This user can handle
this situation in an optimistic manner: she can put on hold
the value for one of the transactions and abort the others.
As previously mentioned, aborted transactions do not affect
credit on the network since corresponding receivers do not
sign the aborted transactions. Then, each sender of an aborted
transaction randomly chooses a waiting period after which she
reissues the transaction. This mechanism closely resembles the
behavior of users in currently deployed credit networks such
as Ripple [2], where better liquidity decreases the odds for a
deadlock in a credit network.

Network churn. When a credit link is created (e.g., a new user
enters the credit network creating a credit link to an existing
user), it cannot be immediately used to perform transactions. It
becomes usable next time the routing algorithm is performed
(i.e., in the next epoch). When a credit link is deleted, its
value is set to 0 and thus immediately unusable to perform
transactions through it. Finally, we describe the case when a
user goes offline in Section VI-A.

D. Security Analysis

We hereby state the security and privacy results for
SilentWhispers. We prove our result in the FNET, FSMT-hybrid
model; i.e., the theorem holds for any UC-secure realization of
FNET and FSMT. Due to space constraints, we defer the proof
of the theorem to the full version of this work [3].

Theorem 1 (UC-Security): Let T be a secure secret shar-
ing scheme and ⇧ be an existentially unforgeable digital
signature scheme, then SilentWhispers UC-realizes the ideal
functionality FCN in the FNET, FSMT-hybrid model.

E. Application of SilentWhispers to Other Credit Networks

We describe how SilentWhispers can be used to realize a
secure and privacy-preserving distributed variant of previous
credit network-based systems, thereby demonstrating its gen-
eral applicability. For that, we observe that current applications
based on credit networks differ on two aspects: the meaning
of credit values on each link and how a path is updated as a
result of a transaction. We refer to [47] for a characterization
of these aspects for Ripple, Bazaar and Ostra.

SilentWhispers can simulate the Ostra credit network by
setting the value on a link i! j as the number of remaining
emails that j allows from i. Interestingly, chgLink and testLink

can be then performed locally between i and j. Moreover,
test and pay operations can be used in a distributed fashion,
as defined for SilentWhispers, thereby covering all necessary
functionality.

The Bazaar credit network can be also realized in a
distributed manner by defining credit values as the accumulated
value of successful transactions between two users sharing a
link. As before, chgLink and testLink operations are locally
carried out, while test and pay can be performed as defined
for SilentWhispers. Interestingly, a successful transaction in
Bazaar additionally requires to restore the values on the links

10

used for a transaction and the addition of the paid credit
to the link between sender and receiver. This functionality
can be simulated in SilentWhispers as follows: the sender
anonymously (e.g., using Tor) publishes the feedback along
with Txid; users involved in the transaction path for Txid can
then locally restore their credit links; finally, the sender can
locally update her link with the receiver.

VI. EXTENDING SILENTWHISPERS

A. Boosting the Availability of the System

We assumed throughout our discussion that all users are
online, an assumption that might not hold in practice. To relax
it, we provide a mechanism to allow transactions to take place
even when some (or all) intermediate users in a path are offline.
Intuitively, we allow each user to store information on the
landmarks so to let them impersonate it during the execution
of the routing algorithm or a transaction but without revealing
critical sensitive data. When the user goes back online, she can
retrieve her updated information and verify the correctness of
the changes. Due to space constraints, we show the detailed
protocol in the full version [3] and describe it here on a high
level.

When a user u is about to go offline, she first notifies her
neighbors and then she secret shares the value of each of her
links and her long term key sk

⇤
u among the landmarks. Finally,

she sends them together with the long term verification key and
the signatures over all link shares (produced by herself and
the neighbors) to all the landmarks. Intuitively, shares of the
link value allow the landmarks to jointly perform operations
on the links values without revealing the value itself. The
signatures (�u,i, �i) are crucial to enable accountability of the
link updates. Shares s0

j allow landmarks to jointly sign the link
state after each update for accountability. Thus, landmarks can
impersonate the user and execute the protocols on her behalf.

In particular, during the landmark routing protocol, each
landmark locally impersonates the offline users. The transac-
tion protocol requires instead the following modifications. In
the first phase, offline users are impersonated by the landmarks,
who interact with online neighbors to create the signature
chain. In the second phase, since landmarks already have the
shares of link values from offline users, they can compute the
credit value on a path and send it to the sender.

Finally, the third phase is performed as follows. The sender
generates shares [[s

1

, . . . , s|LM|]] for the value to be subtracted
in the path along with �i := Sign(skSdr, (si, Txid)), a signature
of each share ensuring the authenticity of the request. Then,
the sender passes it over to the next user in the path.

The steps for each user in the path depend on whether it is
online or not. If the user is online, it gets all the tuples (si, �i),
verifies them, reconstructs the original value and reduces it
(i.e., on hold) from the credit available in the link with the
next neighbor. Moreover, the user signs the new link state
together with the next neighbor or with the landmarks if the
neighbor is offline; if offline, the user sends to each landmark
a pair (si, �i), who in turns verifies it, checks through a multi-
party computation protocol whether si is indeed the share of a
valid value (i.e., smaller or equal than the path capacity) and
eventually reduces (i.e., on hold) si from the share sj of the

path’s link. As before, the new link state is signed together
with the next neighbor if online or locally by the landmarks.
Finally, each landmark logs the tuple (si, �i) to be later on
revealed to the offline user. This mechanism is repeated for
each user until the receiver of the transaction is reached. The
protocol works similarly for the path from the receiver to the
sender.

The test operation is processed analogously except for
link updates. The chgLink operation is, in the offline case,
issued by the requesting user in the form of signed shares
over the value to subtract from (or to add to) the given link.
The landmarks verify the respective signatures, collectively
compute whether the link has enough capacity and eventually
carry out the operation, logging the request. The testLink

operation is simply performed locally by the requester and
the link’s counterparty if online, or the landmarks if offline.

Once a user goes online again, it can simply retrieve the
updated share of the link value from the landmarks together
with the logged operations performed while it was offline.
The user can then reconstruct the values subtracted to her
links and identify the users originating the requests through
the signatures on the shares.

Analysis. The correctness of the underlying SMPC protocol
combined with the integrity of our original construction are
enough to prove that our extension achieves integrity. Also,
this extension achieves value privacy: loosely speaking, all
the information that each landmark learns about the values
of the links comes in the form of shares from the secret-
sharing scheme, which do not reveal any information about the
respective value (unless all the landmarks are colluding, which
is excluded by assumption). The accountability of link values
is guaranteed by unforgeability of the pair of signatures from
the long term keys (or their shares if the user went offline).

These modifications enhance the performance of
SilentWhispers, inasmuch landmarks impersonate offline
users in both routing and transaction protocols and the
corresponding rounds of communications are avoided.
However, this reveals the network topology to the landmarks,
thus losing the notions of link privacy as well as sender or
receiver privacy. We observe that it is hard for any distributed
protocol to preserve link privacy as well as sender and
receiver privacy when users go offline, unless some party is
assumed to be honest. In the extreme case where all of the
users go offline except for two, even a semi-honest adversary
can easily figure out the sender and receiver of an eventual
transaction. Thus, this can be seen as a general issue when
handling offline users in a distributed scenario instead of an
inherent limitation of our construction.

B. Security against Malicious Landmarks

In our initial security model, we only considered passive
corruption of a proper subset of landmarks. In the following
we show how to provide security guarantees in presence of
malicious landmarks.

In the standard protocol the landmarks are deployed for
the computation of the path’s capacity. Therefore, we can
deploy standard techniques to upgrade our system to a stronger
security setting while preserving UC-security, such as the

11

transformation of [19]. We shall note that the previously
mentioned transformation allows the system to handle only
static corruptions of the nodes. While it is certainly possible to
extend the security of our system against adaptive corruption of
peers adopting fully UC-secure SMPC constructions like [15],
this however comes with a considerable increase in cost both
in terms of computation and cryptographic assumptions.

VII. PERFORMANCE ANALYSIS

A. Implementation

We have developed a C++ implementation to demonstrate
the feasibility of SilentWhispers. We focus in particular on the
transaction protocol (Protocol 2), which dominates by far the
computational complexity, simulating the main functionality of
both landmarks and users in the credit network.

Our realization relies on the MPC Shared Library [5], on
the Shamir’s information theoretic construction [56] for secret
sharing, and on Schnorr’s signatures [55], [58] due to their
efficiency.

Implementation-level optimizations. There exist several
independent operations in a transaction that can be parallelized.
Intuitively, in the first phase, users can prepare fresh keys,
signatures and shares of the link values for each path in
parallel. They can then be processed and verified by landmarks
in parallel as well during the second phase of the transaction
protocol. Finally, users can carry out the third phase by
updating links for different paths independently of each other.

Since the min function is associative, we can paral-
lelize independent min operations to improve the efficiency
of calculating the minimum value in a path. For instance,
x := min(a, b) and y := min(c, d) can be done in parallel
and then compute min(x, y) to obtain the minimum among
a, b, c, d. Finally, the sender can reconstruct the mini values
for each pathi and transmit it to the users in pathi in parallel.

B. Performance

We conduct our experiments in machines with 3.3 GHz
processor and 8 GB RAM to carry out distributed operations
involving landmarks (e.g., multiparty computation of the mini-
mum value of a path). We simulate each landmark in a different
machine. For our experiments, we have implemented the
cryptographic schemes used in the transaction protocol. Based
on their execution time, we calculated the total time for the
transaction operations taking into account the implementation
optimizations (see Section VII-A).

Transaction time. The chgLink and testLink operations are
performed directly between the users sharing a credit link and
are extremely efficient. Among the other transactions, we have
studied the pay transaction, since it is clearly more expensive
than test. In particular, we first study the communication cost
and then the computation time required for the pay operation.

In the pay operation, each user in the path must forward
messages to the neighbors. The longest message to be sent is
defined in Algorithm 2-line 20 and contains 340 bytes: 4 veri-
fications keys (i.e., 64 bytes each in the elliptic curve setting),
5 integers of 4 bytes each and a signature (i.e., extra 64 bytes).
In the worst case, a user must forward one such messages for

Setup (5, 1) (5, 2) (7, 1) (7, 2) (7, 3)
Time HbC 0.304 0.314 0.357 0.346 0.349
Time Mal 12.630 13.105 18.973 20.408 21.457

TABLE I: Times in seconds to compute Min(a, b). We use 32 bits to
represent a and b. We consider two scenarios: landmarks are honest
but curious (HbC) and malicious (Mal). In a setup (n, t), n denotes
the total number of landmarks out of which t are compromised.

each of the max neighbors and thus the communication cost
is max · 340 bytes. As we show in Section VII-C, in practice,
max is a small constant and forwarding such message can be
done efficiently even with commodity communication links.

Regarding computation time, we observe that operations
performed by users in phases 1 and 3 consist of the creation
and verification of signatures, which are extremely efficient.
Therefore, we focus on the computation of the credit value of
a path (i.e., the minimum among the credit values of the links
composing the path), since it is the most expensive operation.
The time to compute the minimum between two values among
a set of landmarks is shown in Table I. The actual number of
such min computations required to calculate the credit in a path
depends on the length of the path (i.e., max). Using the im-
plementation level optimizations, landmarks need to perform
only dlog(max)e min operations sequentially. In Table II we
show the time to compute the credit in a path for different
path lengths. In the honest-but-curious case, computing the
minimum credit in a path takes roughly 1.7 seconds for
max = 20.

Routing time. For completeness, we consider the other two
protocols in SilentWhispers: the link setup and the routing
protocol. The link setup is extremely efficient and can be
done even offline. The routing protocol requires a decentralized
BFS algorithm. The decentralized BFS is well studied in
the literature and it has been shown to be practical [39].
In particular, the proposed algorithm has a communication
complexity of O(E) and a time complexity of O(l2), where E
denotes the number of links and l denotes the height of the BFS
tree. Moreover, BFS does not involve cryptographic operations
and it can be run as a background process, thus it does not
hinder the performance of the rest of system operations.

C. Establishing system parameters

Running SilentWhispers requires setting up two system
parameters: the maximum path length and the number of
landmarks. To do that, we have extracted transactions carried
out in Ripple [6], a currently deployed credit network system
with a publicly available ledger containing the network graph
and transaction history. Based on this information, we set up
the system parameters such that SilentWhispers can process
the transactions already performed in Ripple.

First, for processing a transaction, the sender has to pad the
number of links in the path to maintain the privacy properties.
In order to find a meaningful value for the maximum path
length, we have collected all transactions from the start of
the Ripple network until December 2015, resulting in a set
of 17,645,343 transactions. The maximum path length that we
have observed is 10 links. Thus, we set up the maximum path
length to 10 in our evaluation.

12

Path Length (max) 5 10 20
Time HbC 1.047 1.349 1.745
Time Mal 64.371 85.828 107.285

TABLE II: Times in seconds to compute the credit on a path. We use
a setup (7, 3): 7 landmarks, 3 compromised. We study two scenarios:
landmarks are honest but curious (HbC) and malicious (Mal).

Second, processing a transaction requires more than one
path. The actual number of paths used in a transaction will
determine the number of landmarks required in our system.
In order to find this value, we have extracted the distribution
on the number of paths that have been used for the Ripple
transactions. We have observed that the maximum number
of paths used in a transaction is 7 and thus we use 7

landmarks in our evaluation. We note that using the landmark
routing algorithm in the current Ripple network might imply
a variation in the number of required landmarks. However,
choosing adequate users as landmarks will ensure that the
maximum number of paths is maintained within a small factor,
as most of the transactions are routed through the landmarks.

In practice, selecting those users with higher number of
credit links as the landmarks facilitates finding suitable transac-
tion paths between users for a transaction. For instance, banks
are the natural candidate to serve as landmarks in a transaction
network. Furthermore, we have extracted the Ripple network
and observed that most nodes have links to a few highly
connected nodes, which correspond to gateways. They are
already well known to all users as most of them also contribute
to validate the Ripple network, and they thus become the ideal
landmark candidates when applying SilentWhispers in Ripple.

In conclusion, SilentWhispers can simulate the Ripple
network using 7 landmarks and a path length of 10. Given
these system parameters, each user has to forward, in the worst
case, a message of 10 · 340 = 3400 bytes, which can be done
efficiently even with commodity communication links. More-
over, computing the minimum credit in a path takes roughly
1.3 seconds (see Table II). A transaction in the currently
deployed transaction network Ripple, takes approximately 5

seconds. Thus, our evaluation shows that our approach will not
introduce any significant overhead to the transaction time.

D. Discussion

Scalability. The running time of the routing protocol in-
creases with the number of users. However, it can be performed
as a background process and thus does not directly impact the
time to perform transactions. As shown before, the time to
perform a transaction is mostly dictated by the length of the
path, which is set to a fixed value of 10 and it does not increase
with a growing number of users. Therefore, SilentWhispers has
the potential to scale to a large number of users.

Precision and recall. Due to the inefficiency of optimal rout-
ing protocols in networks, it is unavoidable to use approximate
routing protocols as the landmark routing technique [62]. This
approach motivates our results in terms of precision and recall.

Precision measures the ratio between true and false posi-
tives. SilentWhispers achieves an optimal precision of 1 (i.e.,
no false positives) ensuring thus users do not lose money using
the system. The calculation of the credit available is performed

over the most recent snapshot of the credit network. Therefore,
no transaction is answered as successful if there is currently
not enough credit in the network. Recall measures the ratio
between true and false negatives. SilentWhispers achieves a
high recall. Previous solutions [47], [62] have shown that the
use of landmark routing incurs in answering less than 5% of
the transactions wrongly as unsuccessful. Interestingly, these
transactions can be reissued when a new iteration of the routing
protocol is done. At that point, new transaction paths are
calculated and the transaction can be successfully carried out.
Given the efficiency of available distributed BFS algorithms
and that we use the same routing technique as Canal [62] and
Privpay [47], SilentWhispers achieves the same recall value.
Moreover, transactions wrongly tagged as unsuccessful can be
reissued so that they are eventually successfully performed.

Handling offline users. When a user is offline and goes back
online, she must retrieve from landmarks the updates of her
credit links. Then the user must verify that all changes on her
credit links have been correctly performed by the landmarks
(see Section VI-A).

In order to study the impact of this extension, we have
extracted the number of updates performed over credit links
of Ripple users. We have randomly selected 100 Ripple users
and checked how many transactions involve their credit links
over a period of a month (i.e., June 2014). We observe that a
maximum of 107 updates are performed over the credit links
of a user. In principle, the user must check each update as
many times as the number of landmarks, but this task can be
parallelized. For each update performed by a given landmark,
the user must verify the update and its signature, which can
be performed in less than 5 ms. Therefore, even if a user is
offline for a period of a month, it will take her about 500 ms
to restore her information and check its authenticity.

Moreover, as described in Section VI-A, landmarks must
check that the share of the transaction value issued by the
sender is indeed smaller than the capacity of the path. For
that purpose, landmarks carry out the less than operation as a
multiparty computation protocol using the two shared values
as input. This modification implies an overhead of only 0.330
seconds assuming honest-but-curious landmarks and 21.132
seconds in the presence of malicious landmarks.

Finally, landmarks must sign new link states on behalf
of offline users using the shares of their signing keys. For
efficiency, this task can be performed using distributed Schnorr
signatures [58] so that the time to compute a signature is
similar to the creation of a single signature by each landmark,
and thus can be computed efficiently. Therefore, the overall
time for the transaction operation in the presence of offline
users is still dominated by the computation of the credit
available in the path (i.e., about 1.3 seconds).

Handling malicious landmarks. For handling malicious
landmarks, we need to incorporate SMPC protocols secure
against malicious adversaries. In the transaction protocol, the
landmarks are confined to the computation of the minimum
value of the path, whose execution time in the malicious case
is shown in Table I. In a setting with 7 landmarks out of
which 3 are corrupted, the computation of the minimum of two
values takes 21.457 seconds. This implies that computation
of the minimum credit in a path takes approximately 86

13

seconds. Notice that the employed SMPC library does not yet
incorporate the recent significant advancements in the SMPC
domain [18], [20], [34], [36]. It employs the older SMPC
paradigm [10], [28], and with an improved library, we expect
at least an order of magnitude improvement in the performance
of our maliciously secure SMPC executions.

We believe that the resulting running time is still practical
in most of the scenarios. For example, it still allows one
to significantly speed up intercontinental transactions that
currently take up to several days. Nevertheless, we believe
that the extension to malicious landmarks is interesting from
a theoretical point of view, but not worth to be implemented
in practice since landmarks have no incentive in misbehaving,
as discussed in Section III-A.

VIII. RELATED WORK

The problem of enforcing privacy-preserving transactions
in a credit network has recently been studied by Moreno-
Sanchez et al. [47]. They leverage the use of trusted hardware
to enforce the privacy of the transacting parties and the
transacted value by accessing the credit network information
by means of an oblivious RAM algorithm. In contrast to
this work, they target a centralized approach, where a unique
server stores the complete credit network. Such a solution is
hardly applicable to real-life payment systems (e.g., Ripple
and Stellar), since it would require them to change their
hardware infrastructure to incorporate trusted hardware. Also,
the centralized design of [47] is in inherent tension with
the distributed nature of consensus algorithms used in Ripple
and Stellar, and it is unclear who should play the role of
the central server running the trusted hardware. Moreover,
the centralized architecture of [47] may constitute a severe
problem for scalability, since transactions are handled by a
single secure processor and thus cannot be easily parallelized.

Mezzour et al. [41] propose a path-discovery technique that
computes a hash tree connecting users that share a credit link.
To find a path between two users, they compute the private set
intersection of the set of hashed values they hold. A path exists
between two users if the intersection set is non-empty. This
technique does not allow to reconstruct the path connecting
sender and receiver in a private manner, and it omits the
concept of credit by considering unweighted links, two features
that are crucial for credit networks.

Backes et al. [8] present the concept of Anonymous Webs
of Trust, which includes a mechanism to prove the existence of
a path of trust certificates among the sender and the receiver
in zero-knowledge such that intermediate trust relationships
remain private for third parties. This approach, however, relies
on a server maintaining all the trust certificates, which must
be publicly available, thus breaking link privacy.

There is an extensive literature on privacy-preserving on-
line social networks [9], [17], [32], [49]. Intuitively, an object
(e.g., tweet) is secured such that only friends of the object’s
owner can access it while remaining private for the rest of
users. In a credit network however, a given credit link is
potentially accessed by any user connected through a credit
path. Therefore, the owner of a link cannot establish in advance
an access policy to a given link other than the most permissive
one, i.e., everybody is allowed to access it.

There exist several proposals to construct privacy preserv-
ing payments in Bitcoin based on zero-knowledge proofs [11],
[42], centralized mixing [12], decentralized mixing [54], [61],
SMPC [25], confidential transactions [40] and smart con-
tracts [35], [64]. These proposals, however, are not applicable
to the inherently different credit network setting: Bitcoin does
not use the concept of credit link and thus there is not a
credit network among Bitcoin users. SilentWhispers enables
credit network operations such as path finding and payment
path updates in a privacy preserving manner while ensuring
correctness (e.g., no double spending): each intermediate user
verifies that her total balance is preserved after each payment.

Wu et al. [63] present a protocol to compute the shortest
path in a privacy-preserving manner based on private informa-
tion retrieval (PIR) in a centralized setting. Employing their
techniques in a decentralized network does not seem feasible,
if even possible.

IX. CONCLUSIONS

In this work, we presented SilentWhispers, the first privacy-
preserving distributed credit network. SilentWhispers achieves
a number of privacy properties (i.e., sender, receiver, link,
and value privacy), preserves the correctness of transactions,
and provides an accountability mechanism to enforce the
correctness of link updates. Use of highly connected and
readily available nodes such as gateways in Ripple is a crucial
ingredient to make our system efficient, robust, and scalable.

We implemented the cryptographic schemes employed in
SilentWhispers and demonstrated through an experimental
evaluation the practicality of our approach for real-life payment
systems. In particular, we showed that our solution allows for
fast transactions and scales to a growing number of users.
Moreover, we discussed how SilentWhispers can be used
to instantiate currently available applications based on credit
networks on a distributed manner. Finally, SilentWhispers
demonstrates that a privacy-invasive public ledger is not nec-
essary for the secure instantiation of a credit network.

Acknowledgments: We would like to thank the anonymous
reviewers for their valuable feedback and our shepherd Erman
Ayday for his comments and suggestions. This work was par-
tially supported by the German Federal Ministry of Education
and Research (BMBF) through the Emmy Noether program
and through funding for the Center for IT-Security, Privacy and
Accountability (CISPA) and by the German Research Founda-
tion (DFG) via the collaborative research center “Methods and
Tools for Understanding and Controlling Privacy” (SFB 1223).

REFERENCES

[1] “Local Exchange Trading System,” http://tinyurl.com/zea59ob.
[2] “Reliable Transaction Submission,” http://tinyurl.com/zdgdlkm.
[3] “SilentWhispers site,” http://crypsys.mmci.uni-saarland.de/projects/

DecentralizedPrivPay/.
[4] “Stellar website,” https://www.stellar.org/.
[5] “MPC Shared Library,” http://smpc.ml/, 2015.
[6] F. Armknecht, G. Karame, A. Mandal, F. Youssef, and E. Zenner, “Rip-

ple: Overview and outlook,” in Trust and Trustworthy Computing’15.
[7] B. Awerbuch, “Reducing complexities of the distributed max-flow and

breadth-first-search algorithms by means of network synchronization.”
Networks, 1985.

14

http://tinyurl.com/zea59ob
http://tinyurl.com/zdgdlkm
http://crypsys.mmci.uni-saarland.de/projects/DecentralizedPrivPay/
http://crypsys.mmci.uni-saarland.de/projects/DecentralizedPrivPay/
https://www.stellar.org/

[8] M. Backes, S. Lorenz, M. Maffei, and K. Pecina, “Anonymous webs
of trust,” in PETS’10.

[9] F. Beato, M. Conti, B. Preneel, and D. Vettore, “Virtualfriendship:
Hiding interactions on online social networks,” in CNS’14.

[10] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract),” in STOC’98.

[11] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in S&P’14.

[12] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W.
Felten, “Mixcoin: Anonymity for bitcoin with accountable mixes,” in
FC’14.

[13] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in FOCS’01.

[14] ——, “Universally composable signature, certification, and authentica-
tion,” in CSFW’04.

[15] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai, “Universally com-
posable two-party and multi-party secure computation,” in STOC ’02.

[16] O. Catrina and S. de Hoogh, “Improved primitives for secure multiparty
integer computation,” in SCN’10.

[17] L. Cutillo, R. Molva, and T. Strufe, “Safebook: A privacy-preserving
online social network leveraging on real-life trust,” IEEE Communica-
tions Magazine, 2009.

[18] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart,
“Practical covertly secure MPC for dishonest majority - or: Breaking
the SPDZ limits,” in ESORICS’13.

[19] I. Damgård and C. Orlandi, “Multiparty computation for dishonest
majority: From passive to active security at low cost,” in CRYPTO’10.

[20] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias, “Multiparty
computation from somewhat homomorphic encryption,” in CRYPTO’12.

[21] P. Dandekar, A. Goel, R. Govindan, and I. Post, “Liquidity in credit
networks: a little trust goes a long way.” in ACM Conference on
Electronic Commerce, 2011.

[22] D. DeFigueiredo and E. T. Barr, “TrustDavis: A Non-Exploitable Online
Reputation System,” in E-Commerce Technology’05.

[23] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-
generation Onion Router,” in USENIX’04.

[24] Y. Dinitz, “Dinitz’s Algorithm: The Original Version and Even’s Ver-
sion,” in Theoretical Computer Science, 2006.

[25] K. El Defrawy and J. Lampkins, “Founding digital currency on secure
computation,” in CCS ’14.

[26] L. R. Ford and D. R. Fulkerson, “Maximal Flow through a Network.”
Canadian Journal of Mathematics, vol. 8, 1954.

[27] R. Fugger, “Money as IOUs in Social Trust Networks & A Proposal
for a Decentralized Currency Network Protocol,” 2004. [Online].
Available: http://archive.ripple-project.org/decentralizedcurrency.pdf

[28] R. Gennaro, M. O. Rabin, and T. Rabin, “Simplified VSS and fact-track
multiparty computations with applications to threshold cryptography,”
in PODC’98.

[29] A. Ghosh, M. Mahdian, D. M. Reeves, D. M. Pennock, and R. Fugger,
“Mechanism Design on Trust Networks,” in WINE’07.

[30] A. V. Goldberg and R. E. Tarjan, “A New Approach to the Maximum-
flow Problem,” J. ACM, vol. 35, no. 4, pp. 921–940, 1988.

[31] E. Holley, “Earthport launches distributed ledger hub via Ripple,” 2016,
http://tinyurl.com/hdygnab.

[32] S. Jahid, S. Nilizadeh, P. Mittal, N. Borisov, and A. Kapadia, “Decent:
A decentralized architecture for enforcing privacy in online social
networks,” in (PERCOM Workshops) 2012.

[33] A. M. Kakhki, C. Kliman-Silver, and A. Mislove, “Iolaus: securing
online content rating systems,” in WWW’13.

[34] M. Keller, P. Scholl, and N. P. Smart, “An architecture for practical
actively secure mpc with dishonest majority,” in CCS’13.

[35] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” Cryptology ePrint Archive, Report 2015/675, 2015.

[36] Y. Lindell, B. Pinkas, N. P. Smart, and A. Yanai, “Efficient con-
stant round multi-party computation combining BMR and SPDZ,” in
CRYPTO’15.

[37] A. Liu, “Implementing the interledger protocol in ripple,” 2015, http:
//tinyurl.com/gtf6dpj.

[38] ——, “Santander: Distributed Ledger Tech Could Save Banks $20
Billion a Year,” 2015, http://tinyurl.com/zwhkoln.

[39] S. Makki, “Efficient distributed breadth-first search algorithm,” Com-
puter Communications, vol. 19, no. 8, pp. 628 – 636, 1996.

[40] G. Maxwell, “Confidential Transactions, Content privacy for Bitcoin
transactions,” Post on Bitcoin Forum, http://tinyurl.com/zvdr6q2.

[41] G. Mezzour, A. Perrig, V. Gligor, and P. Papadimitratos, “Privacy-
Preserving Relationship Path Discovery in Social Networks,” in
CANS’09.

[42] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anony-
mous distributed e-cash from bitcoin,” in S&P ’13.

[43] T. Minkus and K. W. Ross, “I Know What You’re Buying: Privacy
Breaches on eBay,” in PETS’14.

[44] A. Mislove, A. Post, P. Druschel, and K. P. Gummadi, “Ostra: Lever-
aging Trust to Thwart Unwanted Communication,” in NSDI’08.

[45] A. Mohaisen, N. Hopper, and Y. Kim, “Keep your friends close:
Incorporating trust into social network-based Sybil defenses,” in IN-
FOCOM’11.

[46] A. Mohaisen, H. Tran, A. Chandra, and Y. Kim, “Trustworthy dis-
tributed computing on social networks,” in ASIACCS’13.

[47] P. Moreno-Sanchez, A. Kate, M. Maffei, and K. Pecina, “Privacy
preserving payments in credit networks: Enabling trust with privacy
in online marketplaces,” in NDSS’15.

[48] P. Moreno-Sanchez, M. B. Zafar, and A. Kate, “Listening to whispers
of ripple: Linking wallets and deanonymizing transactions in the ripple
network,” in PETS’16.

[49] S. Nilizadeh, S. Jahid, P. Mittal, N. Borisov, and A. Kapadia, “Cachet:
A decentralized architecture for privacy preserving social networking
with caching,” in CoNEXT’12.

[50] B. Parno, “Bootstrapping trust in a ”trusted” platform,” in HotSec’08.
[51] A. Post, V. Shah, and A. Mislove, “Bazaar: Strengthening User Repu-

tations in Online Marketplaces,” in NSDI’11.
[52] P. Rizzo, “Japan’s SBI Holdings Teams With Ripple to Launch New

Company,” http://tinyurl.com/jaartry.
[53] ——, “Royal Bank of Canada Reveals Blockchain Trial With Ripple,”

2016, http://tinyurl.com/zw48e3c.
[54] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “Coinshuffle: Practical

decentralized coin mixing for bitcoin,” in ESORICS’14.
[55] C.-P. Schnorr, “Efficient signature generation by smart cards,” J. Cryp-

tol., 1991.
[56] A. Shamir, “How to share a secret,” Commun. ACM, 1979.
[57] J. Southurst, “Australia’s Commonwealth Bank Latest to Experiment

With Ripple,” 2015, http://tinyurl.com/pt9gpnv.
[58] D. R. Stinson and R. Strobl, “Provably secure distributed schnorr

signatures and a (t, n) threshold scheme for implicit certificates.” in
ACISP’01.

[59] C. Tryfonopoulos, P. Raftopoulou, V. Setty, and A. Xiros, “Towards
content-based publish/subscribe for distributed social networks,” in
DEBS’15.

[60] P. F. Tsuchiya, “The Landmark Hierarchy: A New Hierarchy for
Routing in Very Large Networks,” SIGCOMM’88.

[61] L. Valenta and B. Rowan, “Blindcoin: Blinded, accountable mixes for
bitcoin,” in FC 2015.

[62] B. Viswanath, M. Mondal, K. P. Gummadi, A. Mislove, and A. Post,
“Canal: Scaling Social Network-based Sybil Tolerance Schemes,” in
EuroSys ’12.

[63] D. J. Wu, J. Zimmerman, J. Planul, and J. C. Mitchell, “Privacy-
preserving shortest path computation,” in NDSS’16.

[64] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentralized
computation platform with guaranteed privacy,” 2015, http://arxiv.org/
abs/1506.03471.

15

http://archive.ripple-project.org/decentralizedcurrency.pdf
http://tinyurl.com/hdygnab
http://tinyurl.com/gtf6dpj
http://tinyurl.com/gtf6dpj
http://tinyurl.com/zwhkoln
http://tinyurl.com/zvdr6q2
http://tinyurl.com/jaartry
http://tinyurl.com/zw48e3c
http://tinyurl.com/pt9gpnv
http://arxiv.org/abs/1506.03471
http://arxiv.org/abs/1506.03471

	Introduction
	Background
	Credit Networks—CN
	Routing in Distributed CN
	Transactions in Distributed CN

	Problem Definition & Key Ideas
	Attacker model
	Strawman Approach and Key Ideas

	Security Definition
	Cryptographic construction
	Building Blocks
	Protocol Description
	System Discussion
	Security Analysis
	Application of SilentWhispers to Other Credit Networks

	Extending SilentWhispers
	Boosting the Availability of the System
	Security against Malicious Landmarks

	Performance Analysis
	Implementation
	Performance
	Establishing system parameters
	Discussion

	Related Work
	Conclusions
	References

