
c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 9 0 – 1 0 2

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

ClearChart: Ensuring integrity of consumer

ratings in online marketplaces

Pedro Moreno-Sanchez

a , ∗, Uzair Mahmood

b , Aniket Kate

a

a CERIAS, Purdue University, West Lafayette, 47907, USA

b IMPR-CS, Saarland University, Saarbruecken, 66123, Germany

a r t i c l e i n f o

Article history:

Received 29 September 2017

Revised 2 April 2018

Accepted 24 April 2018

Available online 20 June 2018

Keywords:

Integrity

Recommendation systems

Online marketplaces

Distributed homomorphic MAC

Verifiable computation

a b s t r a c t

Popular online marketplaces make an extensive use of ratings to inform their prospective

buyers about best-rated products in their service. Given a strong inclination among online

buyers towards buying the best-rated products, there is a clear monetary incentive to sellers,

and in turn to service providers, to unfairly push their favored products at the top of the

ratings lists. Due to the centralized nature of these systems, the problem is particularly

hard to solve against undetectable attacks by service providers.

In this paper, we propose ClearChart, a transparency-enhancing mechanism to discour-

age this misbehavior in today’s centralized marketplaces. Our protocol employs a novel dis-

tributed version of homomorphic MAC along with cryptographic accumulators and digital

signatures to protect integrity of the ratings and improves verifiability of the ratings list.

ClearChart introduces only a minimal storage overhead to the buyers and sellers, and can

also tolerate collusion among sellers, the service provider and a subset of buyers. We have

implemented ClearChart and demonstrated its practicality with an empirical evaluation.

© 2018 Elsevier Ltd. All rights reserved.

1

O
o
o
t
c
N
t
t
s
a
p

u
R

w
a
m

M
r
r
d
t
t

v
t
a
b
i

2

h
0

. Introduction

nline marketplaces such as eBay and Amazon heavily rely
n ratings to help their customers navigate huge collections
f products available through their services. Although advan-
ages of ratings to users are unquestionable, prevalence of ac-
umulated advantage phenomenon (or Matthew effect Times
.Y., 2007) in online marketplaces makes them highly suscep-

ible to unfair practices: If low-ranked items were shown at the
op of the ratings list, the eventual sales of these items might
hoot up as they are shown to more users. The popularity of
n item, and therefore its corresponding revenue, greatly de-
ends on its rating.

As a result, service providers face attacks from malicious
sers aiming at biasing the ratings. For example, Lam and

iedl (2004) describe that there exist eBay users who tamper
∗ Corresponding author.
E-mail addresses: pmorenos@purdue.edu (P. Moreno-Sanchez), umah

b

ttps://doi.org/10.1016/j.cose.2018.04.014
167-4048/© 2018 Elsevier Ltd. All rights reserved.
ith ratings to boost their reputation. This raises an alarm

bout the potential consequences of tampering with recom-
endations and calls for a solution to ensure their integrity.
oreover, a malicious service provider might tamper with the

ating of a product in a ratings list in return to a monetary
eward. This active tampering may give undue advantage (or
isadvantage) to the product in question. This becomes a par-
icularly hard problem given the undetectable nature of the at-
acks supervised by unaccountable service providers.

One possible solution is to reduce the reliance on the ser-
ice provider by having the sellers compute the ratings list
hemselves; however, among other issues, this can introduce
 significant storage overhead to the sellers. Another possi-
le solution is to distribute the service provider functional-
ty among two or more non-colluding servers (Kerschbaum,
009); however, instantiating such parties is not always possi-
le for online marketplaces.
mood@mpi-inf.de (U. Mahmood), aniket@purdue.edu (A. Kate).

https://doi.org/10.1016/j.cose.2018.04.014
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.04.014&domain=pdf
mailto:pmorenos@purdue.edu
mailto:umahmood@mpi-inf.de
mailto:aniket@purdue.edu
https://doi.org/10.1016/j.cose.2018.04.014

c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 9 0 – 1 0 2 91

Our Contribution. In this work, we present ClearChart, a first
line of defense against the active tampering of ratings lists
in marketplaces. ClearChart allows verifiable computation of
a ratings list in a marketplace, which can be checked by ev-
ery party (including buyers), while introducing only a minimal
storage overhead to the sellers.

We observe that a service provider generating a ratings list
for its sellers is very similar to the scenario of verifiable com-
putation on outsourced data (Backes et al., 2013). The ratings
are forwarded (or outsourced) to the service provider, which
performs a computation on them to generate the ratings list.
This computation must then be verifiable by all other parties
in the marketplace. Existing verifiable outsourcing solutions
are designed for the single honest client scenario. However, in
a marketplace there exist multiple parties outsourcing their
ratings to the service provider and some of these parties might
be malicious. To overcome this problem, we have defined a dis-
tributed version (DHMAC) of the homomorphic MAC primitive
(Catalano and Fiore, 2013), which allows sellers to jointly ver-
ify the integrity of the computation for the ratings list done by
the service provider. Only if sellers correctly verify the compu-
tation, they create a signed confirmation that convince buy-
ers of the integrity of the ratings list. Moreover, only if service
provider and sellers agree, a product can be entirely delisted
from the marketplace.

We employ a novel combination of a token system based
on RSA accumulators (Benaloh and De Mare, 1993) along with
DHMAC to ensure integrity of the set of ratings. After a buyer
submits a rating, sellers (as a whole) confirm its reception to
the buyer via a signed confirmation message and to the ser-
vice provider via an authentication tag produced by DHMAC.
This ensures no rating can be dropped by the service provider.
Moreover, only buyers with a token signed by the payment
processor and present in the RSA accumulator can submit a
legitimate rating. This ensures the validity of the submitted
ratings.

Our experimental analysis shows that it is possible to carry
out a transaction and leave a rating in less than 200 ms. The
computation and verification of the ratings list takes less than
2 seconds for a (even unrealistically large) volume of 100,000
ratings. In general, our experiments show the feasibility of de-
ploying ClearChart in practice.

2. Problem Definition

2.1. Online marketplaces and the ratings

Our simplified online marketplace composes of four main par-
ties: buyers purchase products that are offered in the mar-
ketplace, sellers provide inventory to the marketplace, ser-
vice provider is in charge of ensuring communication between
buyer and seller associated to each transaction and finally
the payment processor manages the payments associated to the
transactions.

A transaction in such a marketplace is performed accord-
ing to the following workflow. First, the service provider shows
top rated products according to previous transactions. Given
this concise information, the buyer decides which product to
buy and routes the appropriate payment through the payment
processor (e.g., Visa Credit Service). If the payment is correct,
the corresponding seller receives the money and the product
is shipped to the buyer. After a certain amount of time, the
buyer might decide to leave a rating regarding the product.
This rating must be then considered in future recommenda-
tions.

Each party in an online marketplace tries to maximize its
utility. In particular, each buyer tries to get the best product for
the lowest price. Each seller aims at maximizing its revenue
by selling as many products as possible while contending for
the recognition of this fact from the buyers. Finally, the objec-
tive of the service provider is to maximize its revenue through
commissions on transactions by facilitating as many transac-
tions as possible.

The ratings is the key element in a marketplace that en-
ables to achieve such maximization goal. This is achieved
by maintaining an updated ratings list, computed as a func-
tion (e.g., average) of the ratings associated to each of the
carried out transactions. Buyers use the ratings list to select
which product to buy next. Sellers verify using the ratings list
that ratings regarding their products are being considered cor-
rectly. The service provider uses such ratings list as a proof to
buyers and sellers that he is correctly running the online mar-
ketplace service. Therefore, ensuring the correct behavior of
each of the parties regarding the ratings is vital for a sustain-
able online marketplace.

2.2. Design goals

The goal of the envisioned system to generate a ratings list for
marketplaces is integrity . We follow the convention laid out in
database systems (Motro, 1989) and divide the integrity goal
into validity and completeness .

Validity Only a valid transaction must lead to a rating. More-
over, the service provider must not be able to tamper with an
honestly generated rating value without being detected.

Completeness It must not be possible to drop any honestly
generated rating associated to a valid transaction without be-
ing detected.

Besides integrity, a rating system should fulfill the follow-
ing system requirements:

Efficiency The management of the ratings list should not im-
pact the transaction and rating time.

Storage overhead Any party except from the service provider
should need to store a reduced amount of data. The service
provider will have considerable higher storage capacity and
more data can be stored at its side.

2.3. Threat model

Given the undetectable nature of possible attacks from the
service provider, we model the service provider as being mali-
cious and assume that it can collude with the sellers. In addi-
tion, the service provider can create buyers on its own to fur-
ther benefit itself and the sellers it is colluding with. We place
no restrictions on the way that these malicious parties could

92 c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 9 0 – 1 0 2

Fig. 1 – Transaction phase.

b
d
w
s
o
e
w
i
t
p

2

W
s

I
c
o

(
i
i
p
t
f

a
c
t
w
g

T
o
e
w

e
e

W
c

3

O
p
p
a
f

W
w
t
a
t

T
u

a
a
n
a
e
c

l
t
s
c
t
m
i
c
e
m
t
i

l

R
c
i

k

a

ehave. We assume that the payment processor is honest. Ad-
itionally, we assume that the online sellers can communicate
ith each other through the service provider. We further as-

ume that offline sellers verify the validity and completeness
f the ratings list after coming online. As buyers do not know

ach other in advance, we assume that they need not interact
ith each other. We expect a majority of online sellers as be-

ng honest. Finally, we assume a public key infrastructure (PKI)
o verify identities of the sellers, service provider and payment
rocessor.

.4. Non-goals

e strive to ensure integrity of ratings for a product sold by
everal sellers that compete to be at the top of the ratings list.
f a product is sold solely by one seller, integrity of the ratings
annot be guaranteed; buyers anyways have no choice here
ther than buying the product from the seller.

We observe that a seller can introduce fake transactions
i.e., selling his products to himself) to falsely inflate his rat-
ngs. We do not plan to stop this inherent attack on every rat-
ngs system. Instead, we expect the system to ensure that a
ayment exists with the payment processor in this case such

hat carrying out this attack incurs some cost (e.g., payment
ees) to the malicious seller.

While computing ratings list, we only consider linear oper-
tors. Modern recommender systems perform more complex
alculation (e.g., standard deviation) over the ratings. We leave
he management of complex ratings as an interesting future
ork. We consider ratings as a numerical value (e.g., an inte-

er from 1 to 5) so that it is possible to rank different products.
hese are known as explicit ratings, and they are part of most
f the current ratings (Wang and Tang, 2015). Integrating more
laborated ratings in ClearChart is also an interesting future
ork.

Finally, privacy preserving ratings have been proposed to
nsure the privacy of the rating’s provider, the rating itself or
ven both (Goodrich and Kerschbaum, 2011; Hasan et al., 2012).
e focus on the integrity properties in this work and do not

onsider the privacy aspects.
. ClearChart protocol: Overview

ur ClearChart protocol can be roughly divided in three
hases: the transaction phase, the rating phase and the com-
utation and verification phase. For a single buyer, the trans-
ction phase must be performed before the rating phase. Dif-
erent buyers can perform these two phases independently.

e assume that computation and verification are performed

hen enough ratings have been submitted (e.g., at the end of
he day). If a misbehavior is detected, the protocol enters an

dditional blame phase. In the following, we sketch each of
hese phases.

ransaction phase In a nutshell, the buyer purchases a prod-
ct and gets a token that can be used later to leave a rating,
s depicted in Fig. 1 . This token thus connects the transaction

nd rating phases for a single buyer. Note that such token is
ot present in current marketplaces and its adoption implies
n update of their operational model. However, its integration

nables integrity guarantees that can be interesting to their
ustomers.

In detail, the buyer purchases a product from the ratings
ist shown to her. For that, the buyer performs a payment
o the seller through the payment processor. Then, the seller
hips the product to the buyer. Moreover, after checking the
orrectness of the payment, the payment processor provides
he buyer with a token, which certifies the transaction infor-

ation and the identity of the buyer (i.e., a fresh buyer’s ver-
fication key of a digital signature scheme). Then, the buyer
an register the token with the service provider and the sell-
rs, who reply with a confirmation of its validity. This confir-
ation ensures that the service provider does not drop the

oken in the process since it cannot forge the confirmation on

ts own to fool the buyer. At this point, the buyer is eligible to
eave a rating for the purchased product.

ating phase The buyer leaves a rating for a previously pur-
hased product, for what parties perform the steps depicted

n Fig. 2 . In detail, the buyer sends her rating and the to-
en obtained in the previous phase to the service provider,
long with a signature of this whole information using the

c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 9 0 – 1 0 2 93

Fig. 2 – Rating phase.

Fig. 3 – Computation and verification phase: Service
provider uses the ratings and their authentication to

produce an average rating for a product along with the
proof. Sellers verify the proof.

signature key associated to her identity in the token. This sig-
nature avoids that the rating is forged by any party and en-
sures thus the authenticity of the individual ratings.

Then, the service provider forwards the buyer information
to the sellers appending a proof of two facts: the token is a as-
sociated to a valid transaction and the token cannot be reused
to leave a rating. Sellers check the validity of the proof, au-
thenticate the rating and keep track of the number of ratings
seen so far for a given product. Interestingly, every seller au-
thenticates the ratings for all the products, not only his own
products. Finally, sellers send back to the service provider the
authentication of the rating and a confirmation of the correct-
ness of the whole process. Then service provider stores the
authentication of the rating and forwards the confirmations
to the buyer. These confirmations ensure that the rating has
not been dropped by the service provider.

Computation and verification phase In this phase, the service
provider creates a ratings list according to the ratings left by
the buyers for each of the transactions. For that, the service
provider computes a function of all received ratings for each of
the products. We consider that service provider computes the
average of the ratings, but other functions are also possible.
Moreover, service provider uses authentications on the rat-
ings provided by the sellers to compute a proof of correctness
for the computation. The final ratings list and the proof are
sent to the sellers who in turn verify the validity of the proof
and that in fact all ratings have been considered in the cre-
ation of the ratings list. Intuitively, the sellers can perform this
verification given that they know how many ratings have been
left per product and those ratings have been authenticated by
the sellers in the rating phase. Finally, the ratings list and an
integrity confirmation issued by the sellers are made available
to buyers. If buyers receive confirmations from enough sellers
(e.g., majority of them), they start using the newly created rat-
ings list for the subsequent purchases.

Blame phase If some party misbehaves during the protocol,
a blame phase is entered to identify the misbehaving party.
There are three cases to enter the blame phase due to a misbe-
having seller or service provider. First, sellers cannot correctly
verify a token created in the transaction phase. Second, sellers
cannot correctly verify a rating and its associated token during
the rating phase. Third, the proof of computation of the ratings
list cannot be verified by the sellers. In all these cases, the sell-
ers come together and use the message (e.g., token or proof of
computation) to jointly identify the misbehaving party.

The blame phase is also entered due to a misbehaving
buyer. There are two cases. First, the buyer uses a token not
previously issued by the payment processor. Second, the buyer
submits a rating using an invalid token. In both cases, the
(cryptographic) information contained in the token can be
used to blame the misbehaving buyer.

4. ClearChart protocol: Detailed construction

4.1. Building blocks

Digital signatures We use a digital signature scheme that
must be existentially unforgeable under a chosen message at-
tack. Given a message m and a signing key sk , we denote by
σ ← Sig (sk , m) the signature of m using key sk . The verification
algorithm Verify (vk , σ) outputs 1 if σ is a valid signature for m
under the verification key vk . We instantiate this block with
ECDSA (Johnson et al., 2001).

94 c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 9 0 – 1 0 2

A
t
i
s
t
l
t
a

C

i
a

S
(

t
t

R

b
s

s
m

t

r

u

D
d
s
F
o
r
D

[
i

a
m
w

w

i

n

e

d
w
o
t

s
c

w
(
c
E

d
a
A
o

p
(
e
s
n

i
o

4

S
t
e
e
i
a

(
a
f

ccumulators Accumulators enable a succinct representa-
ion of a set of values. As a security property, we require that
t is infeasible for an adversary to produce a proof of inclu-
ion for an element not present in the accumulator. Func-
ion Accumulate (c, x) includes the element x in the accumu-
ator c . Inversely, Remove (c, x) removes the element x from

he accumulator c . Given the necessary auxiliary information

ux 1 , GenMem (aux , c, x) generates a proof w of x ∈ c . Finally,
heckMem (c, x, w) outputs 1 if w is a correct proof of x ∈ c . We

nstantiate this building block with RSA accumulators (Bari ́c
nd Pfitzmann, 1997; Benaloh and De Mare, 1993).

ecret Sharing based MPC We use multi-party computation

MPC) for a set of functionalities that are realized in a (n,
) secret-sharing setting (Shamir, 1979). We require that less
han t + 1 out of the n parties cannot reconstruct a secret [s].
andInt () generates a secret share of a random value [r]. It can

e instantiated using standard techniques. On input a mes-
age m , PRFSS (m) outputs a secret share [PRF (m)] (i.e., the re-
ult of applying a pseudo random function PRF on a message
). It can be instantiated from Cramer et al. (2005) . The func-

ion Inv ([r]) outputs a secret share of [r −1] . Finally, EQ ([x] , [y])
eturns a secret share [b], containing 1 iff x = y . For them, we
se the work by Aliasgari et al. (2013) .

istributed homomorphic MAC We have developed a novel
istributed homomorphic MAC (DHMAC) inspired from the
ingle client Homomorphic MAC construction by Catalano and

iore (2013) . In our scenario, we leverage the honest majority
f sellers and we make a distributed version of it. We refer the
eader to Appendix C for further motivation for the need of
HMAC.

DHMAC consists of the following functionalities. First,
 σ] ← Auth (sk , τ, m) performs the operations described

n Algorithm 1 . It takes as input the secret key, a label and
 message and outputs a share of the authentication of the
essage. The reason for not allowing a seller to construct the
hole tag in plain as σ := (y 0 , y 1) using the value r τ is that it
ould allow a malicious seller to recover the secret key x .2

Algorithm 1: [σ] ← Auth (sk , τ, m) . / ∗ compute a share of
the authentication tag for m

∗/.

Data : sk := [x −1] , where [x −1] is the share of the inverse
of x ∈ F p

τ ∈ { 0 , 1 } poly (κ) is the label associated to m

and m ∈ Z p is the message to authenticate
Result: [σ] is a share of the authentication tag for m .

1 [r τ] ← PRFSS (τ)
2 y 0 = m

3 [y 1] ← ([r τ] − m) ∗ [x −1]
4 Output [σ] ← (y 0 , [y 1])

Second, σ ′ ← Eval (f, � σ) performs the same operations as
n Catalano and Fiore (2013) . Here, f is an arithmetic circuit
1 In our case, aux denote the factorization of the public modulus
 associated to the accumulator.
2 If the sellers know the value r τ , the secret key x can be recov-
red as (r τ − rating) ∗ y −1

1

t

s
efining the function to be computed over the outsourced data
hile � σ is a vector of authentication tags created through Auth

peration. The output of this algorithm is an homomorphic
ag σ ′ .

Finally, b ← Ver (sk , z, P, σ ′) performs the operation de-
cribed in Algorithm 2 . The algorithm takes as input the se-
ret key sk , the result of the computation z, P := (f, τ1 , ..., τn)
here f is circuit used in the computation and the labels

 τ i) correspond to the labels associated to the inputs of the
omputation, and the homomorphic tag σ ′ created through

val . It is worthwhile to mention that in our specific case the
egree of σ ′ is 1 as the circuit f consists of only additions
nd multiplication with a constant. Therefore, as in line 6 of
lgorithm 2 these operations can be performed on the shares
f the input giving rise to a share of the output 3 . It is also im-
ortant to note that the construction in Catalano and Fiore

2013) suffers from a drawback where the tag size grows lin-
arly with the degree of the arithmetic circuit. Since in our
pecific case, the degree of the arithmetic circuit is 1, this is
ot a problem. The output of this algorithm is the bit b set to 1

f z is the correctly verifiable result of the computation on the
utsourced data.

Algorithm 2: b ← Ver (sk , m, P, σ ′) / ∗ verify the validity of
the function f computation

∗/ .

Data : sk := [x] where [x] is the share of x ∈ F p ,
m ∈ F p is the output of an evaluation circuit f ,
P := (f, τ1 , ..., τn) where f is the evaluation circuit
and the labels (τ ’s) correspond to the inputs of the
circuit,
and σ ′ := (y 0 , y 1) is a homomorphic tag of degree 1,

Result: 1 or 0
1 if y 0 � = m then

2 Output 0

3 else
4 for i ∈ { 1 , ..., n } do
5 [r τi

] ← PRFSS (τi)

6 [ρ] ← f ([r τ1] , ..., [r τn])
7 [ρ

′
] ← y 0 + y 1 ∗ [x]

8 [b] ← EQ([ρ] , [ρ
′
] , κ)

9 Output b after reconstructing from [b] ;

.2. The core protocol

etup We assume that a trusted party sets up the system at
he beginning as follows. It randomly chooses a prime p and

xp-time , a certain amount of preset time after which an op-
ration is no longer considered valid by parties. Moreover, it
nitializes the accumulator st mp := ∅ for the service provider
nd st s i := ∅ for each seller i . Finally, it creates a different pair
 sk , vk) of a digital signature scheme for the service provider
nd each of the sellers. Note that no key pairs are generated

or buyers. Instead, each buyer will generate a pair for each

ransaction on the fly during the transaction.
After that, sellers interact with each other to finish their

etup as follows. They compute [x] ← RandInt () and [x −1] ←
3 This is described in further detail in Algorithm 4.2 .

c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 9 0 – 1 0 2 95

Inv ([x]) . Shared secret [x] severs as the secret key for the Ver

algorithm in the distributed homomorphic MAC, while [x −1]
is used as the secret key for the Auth algorithm. Finally, each
seller locally initializes a pair (p id , τp id ,s i) for each product avail-
able in the marketplace. p id identifies the product and τp id ,s i :=
(p id , count := 0) denotes the label associated to p id stored at
s i . count is a counter on the number of verified ratings associ-
ated to p id . Finally, the service provider initializes its own pairs
(p id , τp id ,mp) .

Transaction Assume buyer j wants to buy product p id for a
value v . Then, the transaction phase is executed in the fol-
lowing steps:

1. Buyer j generates a digital signature key pair (sk b j :=
s, vk b j := g s) , where s is a number chosen uniformly at
random and g is the generator of a group G p of prime
order p .

2. Since buyer j is not known ahead of time, the previous key
pair needs to be certified. In order to do so buyer j routes
through the payment processor a payment for a value v
and additionally sends to the payment processor tx :=
(p id , vk b j , ts) . Here, ts is a timestamp that expires after a
time ts + exp-time .

3. The payment processor in response checks that the
payment is correct and if so it generates token ←
Sig (sk pp , (tx, q)) , where q is a prime number chosen
uniquely by the payment processor for each transaction.
The payment processor provides buyer j with tx, q and token .

4. Buyer j forwards tx, q and token to the service provider.
The service provider performs st mp ← Accumul at e (st mp , q) ,
thereby adding q to the accumulator.4 Then, the service
provider forwards st mp , q, tx and token to all sellers to get a
confirmation from them and thereby convince buyer j that
her token is indeed registered.

Algorithm 3: b ← VerToken (st mp , q, tx, token) / ∗ verify the
validity of token ∗/.

Data : st mp is the accumulator state of the service
provider,
q is a prime number,
tx := (p id , vk b j , ts) where p id is the product id, vk b j is
the verification key for buyer j , ts is a timestamp,
and token is a signature on (tx, q) by the payment
processor.

Result: b A bit set to 1 if all verification succeed.
Otherwise, b is set to 0

1 if Verify (vk pp , (token, (tx, q)) and time current < ts + exp-time
and Accumulate (st s i , q) = st mp then

2 st s i ← st mp

3 Output 1

4 Output 0

5. Each seller i invokes Algorithm 3 . If this algorithm returns ⊥ ,
seller initiates the blame phase using the condition which
i

4 It is worth noting that RSA accumulators require the accumu-
lated values to be prime numbers, a restriction we fulfill in our
protocol.

failed. Otherwise, seller i provides the service provider with
its signature on q , σs i ← Sig sk s i

(q) .
6. The service provider collects all the signatures received

from the sellers, bundles them as (σs 1 , ..., σs | S |) and forwards
this to buyer j as a confirmation of her token ’s registration.

Rating The rating phase is initiated when buyer j wants to
leave a rating for a product (p id), which she has previously
purchased in tx := (p id , vk b j , ts) , by redeeming the associated
token . Following the convention of most online marketplaces,
we assume that rating can take on values 1 to 5 inclusive, in
increments of 1. The following takes place in the rating phase:

1. Buyer j picks a rating for p id and creates a signature σb j
←

Sig (sk b j , (q, rating)) where q is added to link the rating with
token and rating is added in the signature to prevent any
party from altering it. Then, buyer j forwards token, tx, q, rat-
ing and σb j

to the service provider.
2. In response, the service provider needs to assure the sell-

ers that q is indeed in the accumulator. Only then, they au-
thenticate the rating and then remove q from the accumu-
lator. In order to do so the service provider creates a proof
of membership w ← GenMem (aux, st mp , q) and also com-
putes the inverse of the prime number as q −1 . The service
provider can calculate the inverse efficiently as it has ac-
cess to the parameter aux of the accumulator. The service
provider updates the label for p id as τp id ,mp ← (p id , count + 1)
and forwards τp id ,mp , token, tx, q, q −1 , w, rating and σb j

to the
sellers.

Algorithm 4: b ← VerReview (τp id ,mp , token , tx, q, q −1 , w, rating,

σb j
) / ∗ verify the validity of the pair { rating, token } ∗/.

Data : rating is the rating provided by the buyer,
τp id ,mp is the label for rating,
token is a signature on tx and q and σb j

is a
signature on q and rating,
q is a prime number and q −1 is its inverse,
and w is an accumulator witness of membership

Result: b A bit set to 1 if. all verification succeed.
Otherwise, b is set to 0

1 if Verify vk pp (token, (tx, q)) and Verify vk b j
(σb j

, (q, rating)) and

τp id ,s i . count + 1 = τp id ,mp . count and CheckMem (st sel l er i
, q, w)

and tx. p id = τp id ,mp . p id and isInverse (q, q −1) then

2 st sel l er i
← Remove (st sel l er i

, q, q −1)

3 τp id ,s i ← (p id , count + 1) /* store updated label */
4 Output 1

5 Output 0

3. Each seller i for i ∈ {1, ..., | S |} invokes Algorithm 4 . If the
algorithm returns 0, seller i initiates the blame phase us-
ing the condition which fails. Otherwise, seller i generates
its share of the authentication tag for the rating [σ] ←
Auth ([x −1] , rating, τp id ,s i) where [σ] := (y 0 , [y 1]) as defined in
DHMAC. The sellers gather together to reconstruct σ .
In addition seller i produces a signature on the rating, σ

′
s i

←
Sig (sk s i , rating) which serves as confirmation for the buyer j
of that her rating has been witnessed by seller i . { σ ′

s 1 , . . . , σ
′
s | S | }

and σ are forwarded to the service provider.

96 c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 9 0 – 1 0 2

C
p
p
d
a
t

B
e
c

b
p
d
b
b

s

t
s
p
t
v
p
s
c

t
t

E
i

I
i
s

i
r
0

(

i
a
s
w

v
t

m

5
d

W
t
e
s
m
a

O
o
t
b

s
A
f
v
l

c

f
n
a
o
c
a

E
q
t
4. The service provider stores σ which is needed later to pro-
duce a proof of correct computation of the average rating
and updates its accumulator, st mp ← Remove (st mp , q, q −1) .
Moreover, signatures { σ ′

s 1 , . . . , σ
′
s | S | } are forwarded to buyer j

to assure her that the rating was correctly tallied by sellers.

omputation and Verification The computation phase takes
lace when it is time to compute a ratings list of top rated

roducts, for example at the end of a day. In the following, we
escribe the steps performed to compute the average rating of
 single product (e.g., p id). Same steps are repeated for each of
he products available in the marketplace.

1. The service provider computes the average of the ratings
associated to p id . For that purpose, the service provider cre-
ates an arithmetic circuit f of input size n = τp id ,mp . count ,
that computes the average of the inputs. Such arithmetic
circuit can be realized as (i 1 + . . . + i n) ·n −1 , where i j denotes
the j th input. Then, the service provider computes the av-
erage rating for p id as z ← f (rating 1 , . . . , rating n) , using the
n ratings associated to p id .

2. The service provider computes a proof of correctness for
the computation of f . For that, service provider first pro-
duces an homomorphic tag σ ′ ← Eval (ek := p, f, (σ1 , ..σn)) ,
using the evaluation function of DHMAC. Second, the ser-
vice provider creates a signature σcomp ← Sig (sk mp , (z, σ ′)).
Values z and σ ′ serve as proof of computation. Then, ser-
vice provider sends σ comp , z and σ ′ to the sellers. The non-
repudiation property of the signature σ comp prevents the
service provider from denying that it signed the compu-
tation and its proof.

3. Each seller i verifies the proof received by the service
provider using for that the Ver algorithm of the distributed

homomorphic MAC (see Section 4.1). In detail, seller i cal-
culates n = τp id ,s i . count , reconstructs the circuit f and in-
vokes Ver (sk := [x] , z, P := (f, τ1 , . . . , τcount) , σ ′) . The set
of labels are defined as { τ1 := (τp id ,s i . p id , 1) , ..., τcount :=

(τp id ,s i . p id , τp id ,s i . count) } using the label τp id ,s i for p id held by
seller i . Additionally, seller i checks the validity of the signa-
ture σ comp by invoking Verify (vk mp , (σcomp , z, σ ′) . If the homo-
morphic MAC verification algorithm or the signature veri-
fication returns 0, seller i can initiate the blame phase using
the rejected proof or the failed signature. Otherwise, seller i
can be assured that the average rating was computed cor-
rectly, and publishes a confirmation of the fact that she has
correctly verified the computation. With enough of these
confirmations (e.g., number of majority of the online sell-
ers), buyers are convinced of the correctness of the gener-
ated ratings list.

lame Phase This phase is reached whenever any of the sell-
rs (e.g., seller i) wants to create a proof of misbehavior to ac-
use the misbehaving party.

Each seller does three main verifications to detect a possi-
le misbehavior: token verification, rating verification and the
roof of computation verification. First, sellers must ensure
uring token verification that token has been correctly created

y the payment processor, token has not expired and it has
een correctly accumulated by the service provider. Second,
ellers must additionally check during rating verification that
he rating is correctly signed by the issuing buyer, the con-
istency of the label associated to the rating by the service
rovider and whether the token has been deregistered so that
he rating cannot be replied. Finally, sellers must ensure that
alidity of the proof of computation created by the service
rovider after computing the required function over the out-
ourced data. Given the space constraints, we show the con-
rete set of verifications in Appendix B .

In case of a misbehavior is detected by seller i , she bundles
ogether the information that has failed to verify and forwards
his information to all the other sellers in the marketplace.
ach seller j different from seller i verifies the information that
s sent forth by seller i and compares it with her own check.
f the majority of the sellers agree that blaming information

s correct then they blame the accused party. Otherwise, the
ellers blame seller i for false accusation.

This phase can also be reached when a misbehaving buyer
s detected. First, to detect an invalid token during the token

egistration, service provider and sellers must check whether
 ← Verify (vk pp , (token, (tx, q)) holds, where token, (tx :=
 p id , vk b j , ts) , q) is provided by the buyer. In affirmative case,
t is used as a proof of buyer misbehavior. Second, to detect
n invalid token while leaving the rating, service provider and

ellers must check whether ts + exp − time has expired or
hether 0 ← Verify (vk b j , (q, rating)) , where (q, rating) is pro-

ided by the buyer and vk b j must match the information in

he token. Again, in affirmative case, it can be used as proof of
isbehavior.

. Performance analysis and system

iscussion

e have developed a prototypical Python implementation

o demonstrate the feasibility of our construction. We have
mployed the MPC functionalities from an existing secret
haring-based MPC library (Smpc library, 2015). Our imple-
entation comprises the transaction, rating and computation

nd verification phases.

ptimizations We have used several implementation-level
ptimizations in our implementation. The required opera-
ions for any two products are independent and thus can

e parallelized. During the transaction and rating phases,
ellers can run in parallel the verification checks defined in

lgorithm 3 and Algorithm 4 . Thus, we consider the work per-
ormed by each seller independently. In the computation and

erification phase, sellers can create the tag associated to each

abel (Algorithm 2 , lines 4–5) in parallel. Moreover, with the ex-
eption of step 8, the rest of steps of the algorithm can be per-
ormed locally by each seller independently from others. Fi-
ally, computation of the function f , the homomorphic tag σ ′

nd its corresponding verification can be parallelized for each

f the products in the marketplace. In this manner, an effi-
ient implementation will take advantage of the multi-core
rchitecture available in current computers.

fficiency Operations for transaction and rating phases re-
uire only local operations for each party. Thus, we have
ested these phases on a machine with an Intel Core i7 3.1 GHz

c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 9 0 – 1 0 2 97

processor and 16 GB RAM. First, the transaction phase takes
approximately 112 ms from the moment the buyer decides to
buy a product until she receives the confirmation from the
sellers. Second, the rating phase takes approximately 80 ms
from the moment the buyer decides to leave a rating, until
she receives the confirmation from the sellers (i.e., including
the time to perform the Auth over the rating by the sellers).

The computation and verification phase requires first the
service provider to compute Eval . The service provider per-
forms the operations from Eval over the plain values of the
ratings and the authentications provided by the sellers. There-
fore, service provider needs small time to perform such oper-
ations. As an example, we have obtained that service provider
spends 52 ms to evaluate 100,000 ratings. Then, sellers need
to interact to run the Ver algorithm. In our test, we use 7 dif-
ferent machines representing 7 different servers and assume
that 3 of them are malicious. In that setting, we have obtained
that 1.4 seconds are required to run the Ver algorithm using
100,000 ratings for a given product. As explained before, op-
erations for different products can be parallelized and thus
ClearChart scales with a growing number of products.

Interestingly, the computation and verification phase can
be performed as a batch operation at the end of the day, when
the system load is lower, thereby not interfering with the good
performance of the other two phases.

Storage overhead The storage overhead property states that
the sellers should need to store only a reduced amount of data.
In ClearChart, each seller only needs to hold one label τp id ,s i per
product id (p id) irrespective of the number of purchases of that
product. In addition, the sellers also store the accumulator as
st at e s i which is just a group element for an RSA based accu-
mulator.

The verification for the average rating of a product in ad-
dition to the secret key, only requires the use of the sole label
τpid,s i

that seller i holds for that pid . In this way it is guaranteed
that the sellers do not store a lot of data and make use of out-
sourcing to verify computations over the ratings submitted by
the buyers.

Usability A buyer needs to keep the token associated to a suc-
cessful transaction to be able to give a rating later. A storage
mechanism such as email could be used so that the token is
available even when buyers log in through different platforms.
The lightweight operations required in ClearChart for the buy-
ers allow them to run the protocol even in somewhat resource
constrained devices such as mobile phones: a buyer performs
payments, forwards the tokens and verify confirmations (i.e.,
signatures over a message) from the sellers.

Although we focus on marketplaces, ClearChart can be ap-
plied to other scenarios where ratings are allowed after a cer-
tain product or service has been purchased, e.g., hotel booking
sites such as booking.com.

6. Security analysis

Here, we show that ClearChart fulfills the validity and com-
pleteness goals.
Validity The validity goal states that only valid transactions
must lead to a rating. Furthermore, the service provider must
not be able to alter the ratings received from valid transactions
without being detected. Invalid transactions here are the ones
that have no payment associated with them and thus are not
verified by the payment processor.

ClearChart meets validity as follows. First, ClearChart
avoids token hijacking (i.e., stealing a token from an honest
buyer) and replay attacks. We have elaborated these attacks
in Appendix A . To prevent it, after a transaction the buyer gets
a token from the payment processor and registers it with the
service provider. The service provider must convince the sell-
ers of the correct registration of the token who in turn send a
confirmation to the buyer. In this manner, buyer makes sure
token has been correctly registered at the service provider.

In detail, ClearChart prevent these attacks dur-
ing the transaction phase given that buyer j gets a
token ← Sig (sk pp , (tx := (p id , vk b j , ts) , q)) that certifies her
verification key vk b j . Using it, further communication by
buyer j can be verified. In particular, it allows to verify that the
tx and q have not been tampered in its way to the sellers.
The confirmations ({ σs 1 , . . . , σs | S | }) by the sellers assure that
q has been correctly registered. Finally, the validity of the
timestamp and the synchronization between st mp and the
individuals st s i ensures that only q has been accumulated and
can be later used for leaving a rating.

Second, ClearChart is resilient to illegitimate ratings and
binding attacks (e.g., leaving a rating for p id using a token orig-
inally issued for p id ’). We elaborate this attack in Appendix A.3 .
To prevent it, the buyer submits a signed pair of rating and to-
ken. The signature ensures that rating is not changed by the
service provider and the token ensures that rating is associ-
ated to a valid transaction. The sellers send a confirmation of
these facts to the buyer so that any misbehavior from the ser-
vice provider is caught.

In detail, ClearChart prevent these attacks during the rating
phase given that buyer j and sellers can verify the correct com-
munication of the rating, analogously to transaction phase. In
this case, the confirmations ({ σ ′

s 1 , . . . , σ
′
s | S | }) by the sellers ad-

ditionally assure that they have calculated the authentication
tag σ on the correct rating. The honest majority of the sellers
ensure that the authentication tag is correctly computed. The
validity of the timestamp and the synchronization between
st mp and the individuals st s i ensures that rating is associated
to a valid transaction and that only one rating is possible given
a valid transaction. Finally, during the computation and verifi-
cation phase, the service provider uses the correctly computed
authentication tags � σ to produce a proof of correct computa-
tion σ ′ , which ensures that only correct ratings were utilized
to produce the ratings list.

Completeness The completeness goal ensures that the ser-
vice provider is not able to drop any of the ratings submit-
ted by the buyers through valid transactions, without being
detected. Intuitively, when the buyer submits a rating to the
service provider, it must notify the sellers so that they can
in turn confirm the reception to the buyer. Additionally, sell-
ers authenticate the review using the DHMAC primitive. Af-
ter computing the ratings list, the service provider outputs it
along with a proof so that sellers are convinced that no valid

98 c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 9 0 – 1 0 2

r
c
o

t
h
i
b
t
i
c
(

o
p
o
m

7

S

2
s
o
v
s
T
t

t
e
u
t
s
l
p
b
m
s
d

n
e
o
t
i
g
s
a
a
l

(
s
d
i
w

T
a

s
t
l

o
f
t
a
m
a
t
b
a

a

a
t
t
o
o
v
t

i
(
m
i

a
p
a
t
q

8

I
d
t
v
p
b
n
m
i

s
s
r
a

T
C

a
p
l
t
o
r

ating has been dropped in the computation. In such case, a
onfirmation from sellers convince buyers of the correctness
f the computed ratings list.

In detail, when a rating is received, the sellers check that
he count in τp id ,mp is consistent in Algorithm 4 . Each seller i
olds just one label τp id ,s i for each p id and it checks that the

ncremented count in this label is equal to the one sent out
y the service provider. This ensures that all the ratings are
allied correctly. During the verification of the average rat-
ng of a product, the sellers construct the circuit f that has
ount many inputs and the sellers make use of all the labels
 p id , 1) , ..., (p id , count) . If the service provider has dropped any
f the ratings, one of these labels would be missing in the com-
utation; the verification would fail thus allowing the majority
f sellers to detect the misbehavior, avoid to publish a confir-
ation for the new list and buyers to refuse the new list.

. Related work

everal works (Aggarwal et al., 2018; PR, 2017; Zhuang et al.,
018) overview the importance of the rating system in online
ervices such as marketplaces. Based on data from different
nline systems, these works show the impact of untrusted re-
iews and how they can lead the actions of other users in the
ystem. For instance, in Aggarwal et al. (2018) authors identify
witter users which manipulate their projected follower count
o gain popularity among other users in the social network.

The problem of integrity in online systems is not new and

here exist several works that deal with it. For example, Fri-
ntegrity (Feldman et al., 2012) is an approach to prevent an

ntrusted service provider from equivocating about the sys-
em’s state. A honest user accepts the most recently seen

tate only when it is vouched by another user. They thereby
everage the ability of users to communicate to solve the
roblem. In a marketplace scenario, buyers are not known

eforehand and therefore we cannot assume that they com-
unicate with each other. Moreover, Frientegrity does not as-

ure the correctness of the computation over the outsourced

ata.
Computing a ratings list in a verifiable manner is similar in

ature to an e-voting scenario. In this sense, VoteBox (Sandler
t al., 2008) provides a solution to ensure the correct outcome
f an e-voting process. Such a scenario however is very restric-
ive in nature and allows for the computation of the best sell-
ng items only whereas in ClearChart, the service provider can

enerate any ratings list which associated function is repre-
entable as an arithmetic circuit. In addition, in e-voting there
re only a limited number of candidates to vote for whereas in

 marketplace the list of candidates (products) is significantly
arger.

Our solution is motivated by the work of Backes et al.
2013) . We model the computation of a ratings list as an in-
tance of verifiable computation on outsourced data. One key
ifference between our work and that of Backes et al. is that

n our model we have multiple clients in the form of sellers
hereas they provide a solution for a single client scenario.
his observation is not uncommon. Other solutions for verifi-
ble computation like Parno et al. (2013) are also tailored for a
ingle client. Introduction of multiple clients opens the door
o collusion between the parties and this was one of the chal-
enges for our work.

Kerschbaum (2009) proposes a system to deal with integrity
f ratings, where rater and ratee may not know each other be-
orehand. In this system, the service provider is modeled as
wo non-colluding parties. We find such an assumption unre-
listic in a marketplace. We do however make use of the pay-
ent processor, an honest entity that exists within our system

nd we provide a solution for a stronger adversarial model. On

he other hand, we borrow from the solution of Kerschbaum

y allowing only buyers that have purchased a product to leave
 rating for that product and to allow only one rating per trans-
ction.

More recently, Olga Ivanova (2017) , propose a protocol that
ggregate the ratings of a product in order to improve the in-
egrity of the overall ratings. Although this approach reduces
he performance costs of state-of-the-art aggregation meth-
ds, it affects negatively the rating of honest sellers as some
f their ratings are not considered in the final published rating
alue. In ClearChart instead, all ratings are considered so that
he ratings for honest sellers are not hampered.

The problem of accumulating tokens and providing one rat-
ng per transaction is similar to double spending. Nakamoto
2008) introduced a novel way to deal with it, where nodes

aintain a ledger (the blockchain) and a coin is marked as be-
ng spent if it is included in the ledger. If a majority of nodes
re honest, the problem of double spending is dealt with. It is
ossible then to apply this to our marketplace scenario with

n honest majority of sellers. However, the sellers would have
o store the entire ledger which fail to meet our storage re-
uirements.

. Conclusions

n this work, we present ClearChart, a system that uses a novel
istributed verifiable computation over outsourced data pro-
ocol in conjunction with a token accumulator system to pro-
ide guarantees to buyers and sellers in a simplified market-
lace ecosystem that the ratings list of top rated products has
een generated with integrity; that is validity and complete-
ess. We have envisioned a novel primitive, distributed homo-
orphic MAC, to allow multiple sellers outsourcing their data

nto the single service provider available.
We have implemented ClearChart and showed that a user

pends less than 200 ms to perform a transaction and (pos-
ibly) leave a rating, therefore meeting the response time
equirements for such an online system. The computation

nd verification takes less than 2 s for up to 100,000 ratings.
herefore, our study demonstrates the feasibility of deploying
learChart in practice.

Finally, we do not claim ClearChart to be a silver bullet for
ll integrity issues with consumer ratings in online market-
laces. We propose these cryptographic solutions as a first

ine of defense against the undetectable rating manipula-
ion in marketplaces, and expect them to be employed with

ther system-level measures to improve the integrity of online
atings.

c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 9 0 – 1 0 2 99

Acknowledgments

We thank the anonymous reviewers for their feedback. This
work has been supported by the German Universities Excel-
lence Initiative.

Appendix A. Concrete security analysis

A1. Replay attacks

The buyer registers its token and gives its rating through the
marketplace. Then replay attacks are possible given this com-
munication between parties. The service provider mediates
the communication of firstly, the token and secondly, the rat-
ing. The replay attack that is possible is that of multiple rat-
ings that are left by the buyer and also the replay of a valid
rating submitted by a buyer. In the following we discuss these
attacks and how they are prevented in more detail:

Multiple Ratings Assume that a rating can be given without
associated payment or a buyer can leave multiple ratings for
a single payment, then the system can be flooded with ratings
that may give unfair advantage to a seller. The attack scenario
is as follows. The marketplace wants to create multiple rat-
ings or create a buyer that purchases one product and submits
multiple ratings such that the average rating for a malicious
seller is achieved in the ratings list.

In order to prevent this attack, our protocol allows only
one rating per valid transaction , where the valid transaction is
one that involves an exchange of money witnessed by the
payment processor. The payment processor provides only one
unique token per transaction and this can be cashed in to pro-
vide a rating. This design prevents a malicious seller from
gathering an unfair advantage as the only way a buyer can
leave a rating on the part of the seller is if the buyer purchases
a product. If the service provider wishes to facilitate the ma-
licious seller in such a manner then the buyer created by the
service provider will have to purchase the product for every
rating it leaves and this is counted as a valid transaction for
our system.

The mechanism to ensure one rating per transaction is pro-
vided by the signature of the payment processor (token), times-
tamp (ts) in the transaction (tx := (p id , vk b j , ts)) and the use
of the accumulator. The buyer has a limited window of time
to obtain and register a token after a transaction because ts
expires after time exp-time. ts therefore, needs to be valid for
the amount of time it takes for this round of registration to
happen as this ensures that only a single token is registered
for this transaction. Later when a rating is submitted, the sell-
ers remove this token from the accumulator (see Algorithm 4).
The token can no longer be re-used as ts has expired and the
payment processor will no longer provide a new token for the
same transaction. This mechanism as a whole prevents mul-
tiple ratings for a transaction.

Replaying a Valid Rating If the service provider is able to re-
play a valid rating, it can give unfair advantage/disadvantage
to a seller. The attack scenario is as follows. The service
provider receives a good/bad rating from a buyer j who is part
of a valid transaction. This rating is signed by the buyer using
sk b j and the verification key vk b j is part of t x := (p id , vk b j , t s) .
The service provider can keep the token as being unused and
replay the good/bad rating under the same signature to give
unfair advantage/disadvantage to a seller.

Since each seller maintains the state of the accumulator,
the token once used up is no longer a part of the accumulator
and can no longer be added to the accumulator since ts has
expired. This ensures that a rating submitted with a used token
can no longer be replayed.

Since the sellers verify the accumulator state in
Algorithm 3 and Algorithm 4 each, they ensure a consis-
tent state of accumulator operations. In case of a discrepancy
between the accumulator state of a seller and that of a
service provider, the seller can invoke the blame phase
(see Algorithm 5). In Algorithm 4 the sellers check that the
token is valid and that the prime number q is part of the accu-
mulator before removing it and providing authentication to
the rating. This removal marks the token as being used and a
re-addition of this token is prevented by ts in tx := (p id , vk b j , ts)
and the signed token has expired. Therefore, it is not possible
to submit the same rating again as the token for it has been
used up.

Algorithm 5: Blame Identifies service provider misbehav-
ior to be reported.

Data : Initiated by sel l er i for the phase in which it fails
Result: blame_info where this information is forwarded to

other sellers to verify and label the accused party
1 if Algorithm 3 outputs ⊥ then

2 if 0 ← Verify (vk pp , (token, (tx, q)) then

3 blame_info := t oken, (t x, q) , service provider

4 else if t ime current > t s + exp-time then

5 blame_info := ts, service provider

6 else if Accumulate (st s i , q) � = st mp then

7 blame_info := st s i , q, st mp , service provider

8 else if Algorithm 4 outputs 0 then

9 if ⊥ ← Verify (vk pp , (token, (tx, q)) then

10 blame_info := t oken, (t x, q) , service provider

11 else if 0 ← Verify (vk b j , (σb j
, (q, rating)) then

12 blame_info := σb j
, q, rating, service provider

13 else if τp id ,s i . count + 1 � = τp id ,mp . count then

14 blame_info :=

τp id ,s i . count , τp id ,mp . count , service provider

15 else if 0 ← CheckMem (st sel l er i
, q, w) then

16 blame_info := st sel l er i
, q, w, service provider

17 else if tx.pid != τp id ,mp . p id then

18 blame_info := tx. p id , τp id ,mp . p id , service provider

19 else if 0 ← isInverse (q, q −1) then

20 blame_info := q, q −1 , service provider

21 else if Ver (sk := [x] , z, P := (f, τ1 , . . . , τcount) , σ ′) outputs 0
then

22 blame_info := z, σ ′ , service provider

23 else if 0 ← Ver (vk market pl ace , (σcomp , (z, σ ′)) then

24 blame_info := z, σ ′ , σcomp , service provider

25 Output blame_info

100 c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 9 0 – 1 0 2

A

A
t
t
i

n
t

(
o

L
a

t
i
r
p

t
t
i
a
c
h
t
t

A

O
b
b
n
t

u
t
t
e

a

i
g
t
w
b

A

I
r
n

o
s

a
a
m
c

m
t

T
i

l

A

A
g
i
t
t
p
t
p
e

m
o
p
p
i

A
m

I
t

C

A
m

a
r
s

(
f
t
m
t

F

p
i

t

w
s
m

(

t
r

D
k
h
s
i

(
2. Token hijacking

s part of our protocol the payment processor provides each

oken with a unique prime number. In this section, we show

hat it is possible to hijack a token if the same prime number
s used more than once.

For the sake of simplicity lets assume that the same prime
umber q is part of two tokens token := Sig (sk pp , (tx, q)) and

oken ′ := Sig (sk pp , (t x ′ , q)) where t x := (p id , vk b j , ts) and tx :=
 p id , vk ′ b k , ts

′) . When both buyers register their tokens the state
f the accumulator will be such that it has two entries for q .
ets say buyer k wants to hijack both tokens . It can then proceed

s follows.
In the review phase of the protocol, the sellers only check

o make sure that the prime number q that is part of token
s present in the accumulator and that the signature on the
ating provided verifies under the verification key vk b j that is
art of tx := (p id , vk b j , ts) in token. buyer k can use token ′ twice
o leave two ratings. The two ratings are signed by buyer k using
he same signing key vk ′ b k . It is worthwhile to note that buyer k
s entitled to leave the first rating. However, he succeeds in

lso hijacking the second token since q is still part of the ac-
umulator after the first rating is submitted. In addition buyer k
olds a valid token ’ with its own verification key and thus all

he checks in Algorithm 4 succeed allowing buyer k to claim

oken as well.

3. Binding

ne of the properties that a rating in our protocol achieves is
inding. A rating that is submitted during the rating phase is
ound to the p id for which it is intended. This means that it is
ot possible to use a rating submitted for a p id in the compu-

ation of the average rating of a different p id ’.
The p id that a buyer purchases is part of transaction tx and

ltimately of a token . In Algorithm 4 the sellers check to see
hat the product id is the same in both tx and the label τp id ,mp

hat is sent by the service provider. Having been assured of this
ach seller i for i ∈ (1, ..., | S |) stores the updated label and gener-
tes [σ] ← Auth (sk := [x −1] , τp id ,s i , rating) . Notice, that the rating
s now bound to p id in τp id ,s i through [σ]. Since σ is used in the
eneration of a proof of correct computation and the verifica-
ion algorithm makes use of the τ ’s; if the rating is associated

ith another product p id ’ the verification of computation for
oth p id and p id ’ fails.

4. Conspiring sellers

magine that a group of sellers are conspiring against a high-
ated seller. Even in this case, ClearChart ensures the correct-
ess of the ratings.

As discussed in the threat model (Section 2.3), the majority
f sellers are assumed to be honest. Therefore, if there are n
ellers, at most n/ 2 − 1 sellers are malicious. In this setting,
t most n/ 2 − 1 sellers can deviate from the protocol and cre-
te up to n/ 2 − 1 malicious (and possibly distinct) messages

∗
1 , . . . , m

∗
n/ 2 −1 . However, the majority of honest users would

reate at least n /2 correct and equal messages m 1 = m 2 = · · · =
 n/ 2 . In this scenario, the honest seller can always bundle

ogether m 1 , . . . , m n/ 2 , m

∗
1 , . . . , m

∗
n/ 2 −1 as a proof of two things:
he correct message is m as the majority of sellers agreed on

t, and the sellers with messages m

∗
1 , . . . , m

∗
n/ 2 −1 � = m were ma-

icious.

ppendix B. Blame phase algorithm

lgorithm 5 defines the blame phase of the protocol. This al-
orithm is invoked by seller i when an inconsistency is detected

n any of the checks. Algorithm 5 consists of three major por-
ions, one each for the token verification, the rating verifica-
ion and the proof of computation verification. In each of these
arts seller i bundles together the information that has failed

o verify and labels the service provider as the misbehaving
arty. She then forwards this information to all the other sell-
rs in the set S . Each seller k for k ∈ S, k � = i verifies the infor-
ation that is sent forth by seller i and compares it with its

wn check. If the majority of the sellers agree that the service
rovider is the misbehaving party then they blame the service
rovider otherwise, the sellers blame seller i for wrongly accus-

ng the service provider.

ppendix C. Background on (Homomorphic)
essage authenticators

n this section, we provide the background of message authen-
icator schemes for a non-technical reader.

1. Message Authentication Codes (MAC)

 Message Authentication Code (MAC) is used to authenticate a
essage. In practice, a MAC scheme is used by a pair of sender

nd receiver users to ensure that the message received by the
eceiver is an unmodified copy of the message intended by the
ender.

A bit more technically, a message authentication code
MAC) is a tuple of algorithms (KeyGen , Auth , Ver) defined as
ollows. k ← KeyGen (1 λ) is the key generation algorithm that
akes as input the security parameter 1 λ and returns a sym-

etric key k . The authentication algorithm σ ← Auth (k, m)
akes as input a key k and a message m and outputs a tag σ .
inally, the verification algorithm b ← Ver (k, σ, m) takes as in-
ut the key k , the tag σ and the message m and outputs 1 if σ

s a valid tag for message m . Otherwise, it returns 0.
In practice, a MAC scheme can be used as follows. Assume

wo users Alice and Bob so that Alice has a message m and
ants to send it to Bob. Further assume that both of them

hare a symmetric key k . Then, Alice first authenticates the
essage m by executing σ ← Auth (k, m) , and sends the pair

 m, σ) to Bob. When Bob receives such pair, he can verify that
he message has not been modified with the verification algo-
ithm by checking whether Ver (k, σ, m) returns 1.

iscussion The MAC scheme is based on shared symmetric-
ey between Alice and Bob and therefore it assumes that both

ave pre-agreed in a shared key k somehow. Moreover, this
cheme misses the homomorphic properties that we require
n ClearChart: Assume that Bob receives two pairs (σ 1 , m 1) and
 σ 2 , m 2). Then, Bob cannot check whether σ1 + σ2 is a valid tag

c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 9 0 – 1 0 2 101

for the message m 1 + m 2 . These two drawbacks are overcome
with the definition of homomorphic MAC schemes .

C2. Homomorphic Message Authenticator Codes (HMAC)

An Homomorphic Message Authenticator Code (HMAC) allows the
holder of a public evaluation key to perform computations
over previously authenticated messages. This computation
results on a single tag that certifies the correctness of the com-
putation. In particular, a user knowing the corresponding se-
cret key can verify that the tag authenticates the correct out-
put of the computation.

In practice, a HMAC scheme can be used as follows. Assume
two users Alice and Bob so that Alice contains a secret key sk
and Bob has the corresponding public verification key vk . As
in the standard MAC scheme, Alice can use sk to authenticate
several messages m 1 , . . . , m n , creating the corresponding tags
σ1 , . . . , σn . Assume now that Alice sends all this information to
Bob. Bob can use his public verification key to compute σ ∗ =
σ1 + · · ·+σn and m

∗ := m 1 , . . . , m n . For simplicity we assume here
the simple sum function, but many other functionalities are
feasible in practice. Finally, Alice can verify that σ ∗ is a correct
tag of message m

∗ and that it has been correctly computed as
the sum of all the messages.

We refer the reader to Catalano and Fiore (2013) for a formal
description and discussion of HMAC.

Discussion The HMAC cryptographic construction overcome
the two challenges inherent to the standard MAC. First, Alice
and Bob no longer share a symmetric key, but rather Alice can
locally create a secret key and export the corresponding pub-
lic key to Bob. Second, the homomorphic property of HMAC
allows to perform computations over the authenticated data.
In the example above, we refer to a simple sum function but
more complex computations are possible with the construc-
tions available in the literature.

On the other hand, HMAC is restricted to a single authen-
ticator user (i.e., Alice) and a single verification user (i.e., Bob).
Instead, in our protocol we require to have the same generic
functionality as in HMAC but in the presence of multiple au-
thenticator users (i.e., the sellers in our case). We overcome
this challenge, by defining for the first time the Distributed Ho-
momorphic Message Authentication Code (DHMAC). In a nutshell,
the main difference resides on the fact that the secret key sk
is now shared among a set of authenticators (i.e., the sellers)
instead of a single user. Therefore, they need to collaborate in
order to perform the authentication (i.e., creation of the tags
σ1 , . . . , σn) as well as the verification of the final outcome (i.e.,
m

∗, σ ∗). In practice, this allows to have a setting where the pro-
tocol can be correctly executed even in the presence of a few
malicious participants. We refer the reader to Section 4.1 for
the detailed description.

R E F E R E N C E S

Aggarwal A, Kumar S, Bhargava K, Kumaraguru P. The follower
count fallacy: detecting twitter users with manipulated

follower count 2018 arXiv: https://arxiv.org/pdf/1802.03625.pdf.
Aliasgari M , Blanton M , Zhang Y , Steele A . Secure computation on
floating point numbers. Proceedings of NDSS, 2013 .

Backes M , Fiore D , Reischuk RM . Verifiable delegation of
computation on outsourced data. Proceedings of Computer &

Communications Security; 2013. p. 863–74 .
Bari ́c N , Pfitzmann B . Collision-free accumulators and fail-stop

signature schemes without trees. Proceedings of EUROCRYPT;
1997. p. 480–94 .

Benaloh J , De Mare M . One-way accumulators: a decentralized

alternative to digital signatures. Proceedings of EUROCRYPT;
1993. p. 274–85 .

Catalano D , Fiore D . Practical homomorphic macs for arithmetic
circuits. Proceedings of EUROCRYPT; 2013. p. 336–52 .

Cramer R , Damgård I , Ishai Y . Share conversion, pseudorandom

secret-sharing and applications to secure computation.
Proceedings of Crypto; 2005. p. 342–62 .

Feldman AJ , Blankstein A , Freedman MJ , Felten EW . Social
Networking with Frientegrity: privacy and Integrity with an

Untrusted Provider. Proceedings of USENIX Security; 2012.
p. 31 .

Goodrich MT , Kerschbaum F . Privacy-enhanced
reputation-feedback methods to reduce feedback extortion in

online auctions. Proceedings of CODASPY; 2011. p. 273–82 .
Hasan O , Brunie L , Bertino E . Preserving privacy of feedback

providers in decentralized reputation systems. Comput. Secur.
2012;31(7):816–26 .

Johnson D , Menezes A , Vanstone S . The elliptic curve digital
signature algorithm (ECDSA). Int J Inf Secur 2001;1(1):
36–63 .

Kerschbaum F . A verifiable, centralized, coercion-free reputation

system. Proceedings of workshop on privacy in the electronic
society; 2009. p. 61–70 .

Lam SK , Riedl J . Shilling recommender systems for fun and profit.
Proceedings of WWW; 2004. p. 393–402 .

Motro A . Integrity = validity+ completeness. ACM Trans Database
Syst (TODS) 1989;14(4):480–502 .

Nakamoto S . Bitcoin: a peer-to-peer electronic cash system.
Consulted 2008;1(2012):28 .

Olga Ivanova MS . How can online marketplaces reduce rating
manipulation? A new approach on dynamic aggregation of
online ratings. Proceedings of decision support systems; 2017.
p. 64–78 .

Parno B , Howell J , Gentry C , Raykova M . Pinocchio: nearly
practical verifiable computation. Proceedings of IEEE S&P;
2013. p. 238–52 .

PR R . A trustworthy reputation for online rating systems. Imp J
Interdiscip Res 2017;3:1676–9 .

Sandler D , Derr K , Wallach DS . Votebox: a tamper-evident,
verifiable electronic voting system. Proceedings of USENIX

security; 2008. p. 87 .
Smpc library, 2015. https://freedom.cs.purdue.edu/software/

ArithmeticsMPC _ src _ 2014.12.09.tar.gz .
Shamir A . How to share a secret. Commun ACM

1979;22(11):612–13 .
Times NY (2007). Is Justin Timberlake a product of cumulative

advantage? http://www.nytimes.com/2007/04/15/magazine/
15wwlnidealab.t.html?pagewanted=all& _ r=1& . Accessed:
2015-06-05.

Wang J, Tang Q. Recommender systems and their security
concerns. Cryptology ePrint Archive, Report 2015/1108, 2015 .
http://eprint.iacr.org/ .

Zhuang M , Cui G , Peng L . Manufactured opinions: the effect of
manipulating online product reviews. J Bus Res 2018;87:
24–35 .

Pedro Moreno-Sanchez received his Ph.D. in the department of
computer science at Purdue University in May 2018. He worked
as a research assistant under the supervision of Prof. Aniket Kate.
His doctoral research focused on the study and design of secure,

https://arxiv.org/pdf/1802.03625.pdf
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0018
https://freedom.cs.purdue.edu/software/ArithmeticsMPC_src_2014.12.09.tar.gz
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0019
http://www.nytimes.com/2007/04/15/magazine/15wwlnidealab.t.html?pagewanted=all&_r=1&
http://eprint.iacr.org/
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30440-1/sbref0021

102 c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 9 0 – 1 0 2

p
c
v

U
A
S
i
i

A
p

w
l
d
(
v
t
p
r
r
d
b

rivacy-preserving and decentralized credit networks. Pedro re-
eived a B.S. degree and M.S. degree in computer science from Uni-
ersidad de Murcia in 2011 and 2013 respectively.

zair Mahmood is currently a software development engineer at
mazon. He received his M.S. degree in computer science from

aarland University in 2015 and his B.S. in electrical and electron-
cs engineering from Lahore University of Management Sciences
n 2012.

niket Kate is an assistant Professor in the computer science de-
artment at Purdue university. Before joining Purdue in 2015, he
as a junior faculty member and an independent research group

eader at Saarland University, Germany. He completed his post-
octoral fellowship at Max Planck Institute for Software Systems

MPI-SWS), Germany in 2012, and received his PhD from the Uni-
ersity of Waterloo, Canada in 2010. His research integrates cryp-
ography, distributed computing, and data-driven analysis to solve
eople-centric security/privacy problems in decentralized envi-
onments. For the last five years, he has been focusing on secu-
ity, privacy and applicability of blockchain technology. For more
etails, visit the projects webpage: https://freedom.cs.purdue.edu/
lockchains/

https://freedom.cs.purdue.edu/blockchains/

	ClearChart: Ensuring integrity of consumer ratings in online marketplaces
	1 Introduction
	2 Problem Definition
	2.1 Online marketplaces and the ratings
	2.2 Design goals
	2.3 Threat model
	2.4 Non-goals

	3 ClearChart protocol: Overview
	4 ClearChart protocol: Detailed construction
	4.1 Building blocks
	4.2 The core protocol

	5 Performance analysis and system discussion
	6 Security analysis
	7 Related work
	8 Conclusions
	 Acknowledgments
	Appendix A Concrete security analysis
	A1 Replay attacks
	A2 Token hijacking
	A3 Binding
	A4 Conspiring sellers

	Appendix B Blame phase algorithm
	Appendix C Background on (Homomorphic) message authenticators
	C1 Message Authentication Codes (MAC)
	C2 Homomorphic Message Authenticator Codes (HMAC)

	Reference

