Georgia Avarikioti
Dr.sc.ETH
Zeta Avarikioti joined Tu Wien as a postdoctoral fellow (FWF ESPRIT program) in 2022. Prior to that, she was a postdoc fellow at IST Austria and a visiting postdoc at Columbia Univeristy. She obtained a PhD in Information Technology and Electrical Engineering at ETH Zurich in 2021.
After her PhD, Zeta Avarikioti was awarded three postdoc fellowships (SNSF Early Postdoc.Mobility, IST Postdoc Fellowship, FWF ESPRIT Program). She has chaired two workshops and participated in the PC of more than 10 conferences.
Her research interests lie in the area of blockchains and specifically on the intersection of distributed computing and game theory. She has mainly focused her research so far on the scalability of blockchains and the game-theoretic analysis of blockchain protocols.
Roles
- PostDoc Researcher
Projects (at TU Wien)
-
SCALE2 : Scalable, Private, and Interoperable Layer 2
2023 - 2027 / Vienna Science and Technology Fund (WWTF) -
CoRaF : A Composable Rational Framework for Blockchain Systems
2022 - 2025 / Austrian Science Fund (FWF)
Publications (created while at TU Wien)
-
2023
-
Glimpse: On-Demand PoW Light Client with Constant-Size Storage for DeFi
Scaffino, G., Aumayr, L., Avarikioti, G., & Maffei, M. (2023). Glimpse: On-Demand PoW Light Client with Constant-Size Storage for DeFi. In Proceedings of the 32nd USENIX Security Symposium (pp. 733–750).
MetadataAbstract
Cross-chain communication is instrumental in unleashing the full potential of blockchain technologies, as it allows users and developers to exploit the unique design features and the profit opportunities of different existing blockchains. The majority of interoperability solutions are provided by centralized exchanges and bridge protocols based on a trusted majority, both introducing undesirable trust assumptions compared to native blockchain assets. Hence, increasing attention has been given to decentralized solutions: Light and super-light clients paved the way for chain relays, which allow verifying on a blockchain the state of another blockchain by respectively verifying and storing a linear and logarithmic amount of data. Unfortunately, relays turn out to be inefficient in terms of computational costs, storage, or compatibility. We introduce Glimpse, an on-demand bridge that leverages a novel on-demand light client construction with only constant on-chain storage, cost, and computational overhead. Glimpse is expressive, enabling a plethora of DeFi and off-chain applications such as lending, pegs, proofs of oracle attestations, and betting hubs. Glimpse also remains compatible with blockchains featuring a limited scripting language such as the Liquid Network (a pegged sidechain of Bitcoin), for which we present a concrete instantiation. We prove Glimpse security in the Universal Composability (UC) framework and further conduct an economic analysis. We evaluate the cost of Glimpse for Bitcoin-like chains: verifying a simple transaction has at most 700 bytes of on-chain overhead, resulting in a one-time fee of $3, only twice as much as a standard Bitcoin transaction. -
Hide & Seek: Privacy-Preserving Rebalancing on Payment Channel Networks
Avarikioti, G., Pietrzak, K., Salem, I., Schmid, S., Tiwari, S., & Yeo, M. (2022). Hide & Seek: Privacy-Preserving Rebalancing on Payment Channel Networks. In I. Eyal & J. Garay (Eds.), Financial Cryptography and Data Security (pp. 358–373). Springer-Verlag.
DOI: 10.1007/978-3-031-18283-9_17 MetadataAbstract
Payment channels effectively move the transaction load off-chain thereby successfully addressing the inherent scalability problem most cryptocurrencies face. A major drawback of payment channels is the need to “top up” funds on-chain when a channel is depleted. Rebalancing was proposed to alleviate this issue, where parties with depleting channels move their funds along a cycle to replenish their channels off-chain. Protocols for rebalancing so far either introduce local solutions or compromise privacy. In this work, we present an opt-in rebalancing protocol that is both private and globally optimal, meaning our protocol maximizes the total amount of rebalanced funds. We study rebalancing from the framework of linear programming. To obtain full privacy guarantees, we leverage multi-party computation in solving the linear program, which is executed by selected participants to maintain efficiency. Finally, we efficiently decompose the rebalancing solution into incentive-compatible cycles which conserve user balances when executed atomically. -
Suborn Channels: Incentives Against Timelock Bribes
Avarikioti, G., & Thyfronitis Litos, O. S. (2022). Suborn Channels: Incentives Against Timelock Bribes. In Financial Cryptography and Data Security (pp. 488–511). Springer Nature Switzerland AG.
DOI: 10.34726/3904 MetadataAbstract
As the Bitcoin mining landscape becomes more competitive, analyzing potential attacks under the assumption of rational miners becomes increasingly relevant. In the rational setting, blockchain users can bribe miners to reap an unfair benefit. Established protocols such as Duplex Micropayment Channels and Lightning Channels are susceptible to bribery, which upends their financial guarantees. Indeed, we prove that in a two-party contract in which the honest party can spend an output right away, whereas the malicious can only spend the same output after a timelock, the latter party can promise a high fee to the miners, who then intentionally ignore the transaction of the honest party in anticipation of the higher fee. This effectively prevents a valid transaction from ever entering the blockchain, resulting in potentially severe financial losses for the honest and considerable gains for the malicious party. We expand previous results on timelock bribes to more realistic blockchains, proving that a general class of contracts are susceptible. We then apply our results to Duplex Micropayment Channels and Lightning Channels, providing exact bounds on their safe operating region. Furthermore, we enhance the Bitcoin Script of Duplex Micropayment Channels so that the coins of a party that attempts to bribe are given to the miners as fees, therefore effectively disincentivizing bribes. Our solution, named Suborn channels, is implemented as a proof-of-concept. We also propose a small change to Lightning Channels that achieves a similar effect. Moreover, we formally express the exact circumstances under which our two proposals ensure alignment of miner incentives with the prescribed protocol outcome.